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Preface

The purpose of this book is to provide a nonmathematical introduction to the
LISREL computer program (Joreskog & Sorbom, 1985). It was written with
a very specific audience in mind—those wishing to use the LISREL program,
but who, so far, have been frightened off by its seemingly complex notation,
mathematical concepts, and overall statistical headiness. Since I too am a victim
of math anxiety, symbol shock, and other related phobias, I know only too well,
the frustration of trying to translate mathematical jargon into plain and simple
everyday language. The book is therefore written not for the mathematically
sophisticated, but rather, for those who seek a more earthly approach to the
topic.

After some eight years of finding my way through the LISREL forest that
included the previous program versions IV and V, and after asking innumerable
questions regarding its use, I wish now to share what knowledge I have on appli-
cations of LISREL with my fellow math phobics. As with other life experiences,
some are best learned by doing: nowhere is this more true than in learning to
use LISREL. By providing concrete applications, along with accompanying data
and important caveats regarding the LISREL program, I hope to save you from
the trial-and-error approach that characterized much of my own learning of the
program.

The focus of the book is not on the theoretical or statistical framework of
LISREL. Indeed, there are now many well-written texts on the topic of LISREL
modeling in general, and many excellent journal articles on particular problems
related to it. Rather, the emphasis is on the practical aspect of LISREL model-
ing. As such, the new user is ‘‘walked through’’ a variety of LISREL applica-
tions; all are based on the confirmatory factor analytic model.

All application examples in the book are taken from my own research in the
area of self-concept. I chose this approach for several reasons. First, it maxi-
mized my freedom to make the data available to you for your own experimenta-
tion with the program. I urge you to work through each application using these
data. Second, it enabled me to provide you with specific journal references to
which you may turn should you wish further elaboration of the underlying the-
ory, measuring instruments, sample description, and the like. Finally, it pro-
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vided me with detailed information regarding problems encountered at various
stages of the data analyses. The value here comes from learning how to solve
the problem; I pass this information along to you with each selected application.
While these applications derive from a psychological perspective, it should be
emphasized that all are equally applicable to any of the other social or behavioral
sciences.

The book is divided into three major sections. In Section I, I introduce the
reader/user first to basic concepts associated with the LISREL model (Chapter
1), and then to the basic components of the LISREL program (Chapter 2). Sec-
tion II focuses on single-group analyses; I present applications related to the
validation of a theoretical construct (Chapter 3), a measuring instrument (Chap-
ter 4), and multiple constructs assessed by multiple measures within the frame-
work of the multitrait-multimethod matrix (Chapter 5). Finally, in Section III, I
examine applications that relate to multigroup analyses. Specifically, I demon-
strate procedures for testing the measurement and structural invariance of a theo-
retical construct (Chapter 6), a measuring instrument (Chapter 7), and latent
mean structures (Chapter 8).

With each application, I provide data in correlation matrix form, along with
means and standard deviations; a schematic presentation of the model being
tested; the specific LISREL program input; a discussion of results in terms of
goodness-of-fit and post hoc procedures; and the related journal reference where
the theoretical framework, methodology, and substantive findings are described
and discussed in more detail. Elsewhere, I present and interpret selected portions
of the LISREL output, point out the causes of and solutions to particular error
messages, and offer helpful caveats related to particular LISREL functions.

Acknowledgments. 1 wish to express my indebtedness to several people who are
directly responsible for my persistent interest in the application of LISREL to
various models of psychological phenomena. To Richard J. Shavelson, without
whose continued encouragement over nearly a decade that spans the early days
of my doctoral research up to the present, the contents of this book would never
have come into being; to Rich I owe much more than I can ever hope to repay.
Although initially he knew me only as a signature on a letter requesting more
information on a proposed structural model to validate self-concept (Shavelson
& Stuart, 1981), he took the time to write and encourage me in my doctoral
work, convincing me that my research represented a worthy contribution to the
field. More recently, as a post-doctoral fellow at UCLA, where I had the good
fortune to collaborate with him on further validation of self-concept using LIS-
REL applications, he taught me other important skills essential to good research:
clear thinking, succinct writing, and thorough analyses. In my view, Rich Sha-
velson is the epitome of both teacher and researcher par excellence; he will for-
ever be an inspiration to me in my academic endeavors!

To Bengt Muthén who, during my tenure at UCLA (and many times since),
has answered innumerable questions, provided invaluable advice, and taught me
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“‘real”’ versus ‘‘unreal’’ data. To Herbert W. Marsh whose plethora of self-
concept papers, many of which have involved LISREL applications, have con-
stantly challenged me to learn more. To James E. Carlson, who during the period
of my doctoral research, guided me through my first LISREL experiences back
in the days of LISREL IV when finding ‘‘start values’” was akin to looking for
a needle in a haystack. To Lee Wolfle, who provided me with the first explana-
tion of LISREL symbols and matrices that I could actually understand; his 1981
AERA paper will forever remain a prized possession in my collection of LISREL
papers. And finally, to Peter Bentler whose papers and oral presentations have
provided me with a wealth of invaluable information; I can only hope to aspire
to his consummate interpretative and literary skills.
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1

The LISREL Confirmatory Factor
Analytic (CFA) Model

1. Basic Concepts

1.1. The Role of Latent and Observed Variables

In the social and behavioral sciences, researchers are often interested in
studying theoretical constructs that cannot be observed directly; such
phenomena are termed latent variables, or factors. (Throughout the
book, the terms ‘‘construct,’”’ ‘‘latent variable,”’ and ‘‘factor’’ are used
interchangeably). Examples of latent variables in psychology are self-
concept and anxiety; in sociology, powerlessness and racial prejudice; in
education, teacher expectancy and verbal ability; in economics, eco-
nomic expectation and social class.

Since latent variables are not directly observed, they cannot be directly
measured. Thus, the researcher must operationally define the latent vari-
able of interest in terms of behavior believed to represent it. Assessment
of the construct, then, is obtained indirectly through measurement of
some observed behavior. The term ‘‘behavior’’ is used here in its broad-
est sense to include scores on a particular measuring instrument. Thus,
observations may include, for example, self-report responses to an atti-
tude scale, scores on an achievement test, in vivo observation scores re-
lated to some physical task or activity, coded response to interview ques-
tions, and the like. These measured scores (i.e., measurements) are
termed observed, manifest, or indicator variables; they are considered to
represent the underlying construct of interest.

It is now easy to see why methodologists urge researchers to be cau-
tious in their selection of measuring instruments, and emphasize choosing
only those that are psychometrically sound. To do otherwise runs the risk
of limiting the credibility of the findings.

1.2. The Role of Factor Analysis

The most well-known statistical procedure for investigating relations be-
tween a set of observed variables and its underlying constructs is that of
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factor analysis. In using this approach to data analyses, the researcher
studies the covariation among the observed variables in order to gather
information on a (usually) smaller number of latent variables.

There are two basic types of factor analyses: exploratory factor analy-
sis (EFA) and confirmatory factor analysis (CFA). In EFA, the re-
searcher does not know the underlying latent variable structure. Thus,
the focus of the investigation is directed toward uncovering the minimal
number of factors that underlie the observed variables. In CFA, on the
other hand, the researcher has some knowledge of the underlying latent
variable structure. This knowledge may be based on theory, empirical
research, or some combination of both. For example, suppose a measur-
ing instrument is designed to measure four facets of self-concept (say,
general, academic, physical, and social), and this factor structure has
been validated in the literature. The researcher can feel confident in pro-
ceeding with a CFA analysis. As such, he or she postulates a priori that
certain test items will be highly related to the latent variables they are
designed to measure, and only negligibly related (or, better still, not re-
lated at all) to the remaining factors. In factor analysis, these relations
are termed factor loadings. Thus we say that the items will load highly
on those factors for which they were designed to measure and will load
negligibly on the other factors. Putting this in context with our example
of self-concept, the researcher would specify a priori that the items de-
signed to measure general self-concept would load highly on that factor
but would yield loadings of approximately zero on the academic, physi-
cal, and social self-concept factors.

While EFA can be conducted using LISREL, it is most commonly con-
ducted using a more traditional approach that can be accomplished by
using other statistical packages, such as SPSS, SPSSX, SAS, and BMDP.
On the other hand, CFA requires the analysis of covariance structures
that is the basis of the LISREL approach to data analysis.' This book
therefore limits itself to applications that fall within the CFA framework.

1.3. The Role of Statistical Models

Statistical models are a convenient way of describing the structure under-
lying a set of observed variables. In other words, they provide the sim-
plest explanation of how the observed and latent variables are related to
one another. Most people think of statistical models as being geometric
schema portraying specific phenomena under study, but this is not always
the case; indeed, such diagrams are a very convenient and effective way
of getting the idea across. However, statistical models can also be de-

'Other available computer programs designed for the analysis of covariance struc-
tures are EQS (Bentler, 1985) and COSAN (McDonald, 1978) for use with interval
data, and LISCOMP (Muthén, 1987) and PRELIS (Joreskog & Sorbom, 1986) for
use with categorical data.
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scribed by means of mathematical equations that can be expressed either
in matrix or regression format; the latter is a series of regression equa-
tions, each of which represents the relation between one observed vari-
able and its underlying latent variable.

Typically, a researcher postulates a statistical model based on his or
her knowledge of the related theory, on findings from other research con-
ducted in the area, or on some combination of both. The researcher then
sets out to test the model (i.e., test the hypothesis that the model is plausi-
ble) by collecting data on all variables specified in the model. The primary
statistical problem in this model-testing procedure is to examine the
goodness-of-fit between the hypothesized model and the sample data that
comprise the observed measurements. Said another way, the researcher
imposes structure on the sample data by forcing them to fit the hypothe-
sized model and then determines how well the observed data fit the model
under study. Since it is highly unlikely that a perfect fit will exist between
the observed data and the hypothesized model, there will be a differential
between the two; this differential is termed the residual.

The model-fitting process can be summarized as follows:

Data = Model + Residual

where

*Data represent the observed measurements based on the sample.

*Model represents the hypothesized structure underlying the observed
variables.

*Residual represents the difference between the hypothesized model and
the observed data.

The statistical theory related to this model-fitting process can be found
in the many texts and journal articles devoted to the topic of LISREL
modeling.

2. The General LISREL Model

In order to have a comprehensive understanding of the CFA model, it
behooves us at this point to first examine the general LISREL model.
This diversion is necessary for two reasons: it will help you to more fully
comprehend how the CFA model fits into the general LISREL scheme of
things and it will facilitate the later understanding of analyses related to
mean structures discussed in Section 3.

2.1. Basic Composition

The general LISREL model can be decomposed into two submodels: a
measurement model and a structural model. The measurement model de-
fines relations between the observed and unobserved variables. In other
words, it provides the link between scores on the measuring instruments
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6 1. The Lisrel Confirmatory Factor Analytic (CFA) Model

(i.e., observed indicator variables), and the underlying constructs they
are designed to measure (i.e., the unobserved latent variables). The mea-
surement model, then, specifies the pattern by which each measure loads
onto a particular factor. The structural model defines relations among the
unobserved variables. In other words, it specifies which latent variable(s)
directly or indirectly influences (i.e., ‘‘causes’’) changes in the values of
other latent variables in the model.

One necessary requirement in working with LISREL is that, in specify-
ing the structural model, the researcher distinguishes between latent vari-
ables that are exogenous and those that are endogenous. Exogenous la-
tent variables are synonymous with independent variables; they cause
fluctuations in the values of other latent variables in the model. Fluctua-
tion in the values of exogenous variables is not explained by the model;
rather, they are considered to be influenced by other factors external to
the model. Background variables such as sex, age, and socioeconomic
status are examples of such external factors. Endogenous variables are
synonymous with dependent variables; they are influenced (i.e.,
““‘caused’’) by the exogenous variables in the model, either directly or
indirectly. Fluctuation in the values of endogenous variables is said to be
explained by the model since all latent variables that influence them are
included in the model specification.’

2.2. The Link Between Greek and LISREL

In the Joreskog tradition, LISREL models are couched in matrix notation
that is represented by Greek letters. Thus, a second necessary require-
ment in learning to work with LISREL, is to become thoroughly familiar
with the various LISREL matrices and the Greek letters that represent
them.

In general, matrices are represented by upper-case Greek letters. The
elements of these matrices are indicated by lower-case Greek letters; they
represent the parameters in the model. By convention, observed mea-
sures are represented by Roman letters. As such, exogenous variables
are termed ‘‘X-variables’’; endogenous variables are termed ‘‘Y-vari-
ables.” At the most, eight matrices and four vectors define a general LIS-
REL model.’ All matrices and vectors, however, may not necessarily be
required; this will depend on the particular model specified.

The measurement model is defined by four matrices and one vector;
the structural model by four matrices and three vectors. As such, the

%Although beyond the scope of this volume, it should be noted that in more com-
plex general LISREL models, it is often the case that latent variables operate as
exogenous and endogenous variables within the same model.

*A matrix represents a series of numbers written in rows and columns; each num-
ber in the matrix is termed an element. A vector is a special matrix case, having
more than one row, albeit only one column.
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measurement model is composed of two regression matrices, two vari-
ance-covariance matrices among errors of measurement, and one vector
representing the endogenous factor.

The structural model comprises two regression matrices, two variance-
covariance matrices (one among the exogenous factors and one among
the residual errors associated with the endogenous factors), and three
vectors representing the exogenous variables, endogenous variables, and
errors associated with the endogenous variables, respectively. An expla-
nation of these matrices is now presented.

The Measurement Model*

1.A, is a p by m regression matrix that relates m exogenous factors to
each of the p observed variables designed to measure them.

2.A, is a g by n regression matrix that relates n endogenous factors to
each of the g observed measures designed to measure them.

3.0, is a symmetrical p by p variance-covariance matrix among the errors
of measurement for the p exogenous observed variables.

4.0.is a symmetrical g by g variance-covariance matrix among the errors
of imeasurement for the g endogenous observed variables.

5.vis an n by 1 vector of constant intercept terms.’

The Structural Model

1.I' is an m by n regression matrix that relates the m exogenous factors
to the n endogenous factors.

2.B is an n by n regression matrix that relates the n endogenous factors
to one another.

3.® is an m by m symmetrical variance-covariance matrix among the m
exogenous factors.

4.¥ is an n by n symmetrical variance-covariance matrix among the n
residual errors for the n endogenous factors.®

5.¢is an m by 1 vector of exogenous factors.

6.1 is an n by 1 vector of endogenous factors.

7.C is an n by 1 vector of residuals.

Note: in the general model, LISREL does not permit a priori specification
of variances and covariances among the endogenous factors; no variance-
covariance matrix is therefore identified here. This does not reflect a limi-
tation in the LISREL program; rather, it is inherent in the model’s mathe-
matical logic.

“By convention, matrices are defined according to their number of rows (r) and
columns (c), the number of rows is always specified first. This r X ¢ description
of a matrix is termed the order of the matrix.

*We need only concern ourselves with this vector when testing for differences in
mean structures (see Chapter 8). Otherwise, v is assumed to equal zero.

SThese residual terms are referred to as errors in the equation or as residual errors
of prediction; the term ‘residual’’ is used to distinguish them from errors of mea-
surement associated with the observed variables.
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TABLE 1.1. Summary of Matrix and Greek Notation

Full Program Matrix

Greek letter matrix code elements Type
Measurement Model
Lambda-X Ay LX Ay Regression
Lambda-Y Ay LY Ay Regression
Theta delta O, TD 05 Var/cov
Theta epsilon 0, TE 0, Var/cov
Nu — —_ v Vector
Structural Model
Gamma r GA Y Regression
Beta B BE B Regression
Phi i) PH b Var/cov
Psi v PS [\ Var/cov
Xi (or ksi) —_ — £ Vector
Eta — — n Vector
Zeta —_ —_ L Vector

A summary of these matrices and vectors is presented in Table 1.1 with
the program coding for each matrix, since the latter is representative of
its Greek name.

3. The LISREL CFA Model

3.1. A Comprehensive Explanation of the CFA Model

Specification of the CFA model involves only a portion of the general
LISREL model noted earlier. Furthermore, it is specified either as being
exogenous or endogenous; this choice is an arbitrary one.” However,
once the model is specified as one or the other, all components of the
model must be consistent with this specification. In other words, with a
CFA model, the researcher works either with an all-X (exogenous) or all-
Y (endogenous) model. In hypothesizing a CFA model, the researcher
makes specifications with respect to each of the following:

(a)The number of factors (&s or ms).

(b)The number of observed variables (Xs or Ys).

(c)Relations between the observed variables and the latent factors (A.s
Or AyS).

"This distinction is made here for purposes of simplicity and clarity only. Techni-
cally speaking, in CFA models there is no designation of variables as either exoge-
nous or endogenous since there is no specification of causal relations among the
latent variables; consequently, {, the residual error term associated with the pre-
diction of m from £, is zero. This accounts for the freedom on the part of the
researcher to elect usage of one or the other model.
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CFA (X) MODEL CFA (Y) MODEL

FIGURE 1.1. The LISREL CFA Model Relative to the LISREL Full Model.

(d)Factor variances and covariances (®).
(e)Error variances (and possibly covariances) associated with the ob-
served variables (0, or ©,).

To get a visible perspective of the CFA model relative to the general
model, let’s examine Figure 1.1.

A third requirement in learning to use LISREL is to understand the
geometric symbolism depicted in schematic models. The symbols used in
Figure 1.1 are defined here.

Symbol Representation
O o Latent variables.
[:' » Observed variables.

|___:| é“C) ¢ Regression paths from the LVs to their observed
variables; their coefficients (As) are synonymous
with factor loadings.

8 € e Measurement error associated with the observed
variables.
O_) O e Causal impact of £ on 7.
Oz e Residual error in the prediction of 7 from §&.

Within the framework of the model in Figure 1.1, we see two CFA
models—one exogenous (X-model) and one endogenous (Y-model). The
CFA X-model is a one-factor model measured by three observed vari-
ables, while the CFA Y-model is a one-factor model measured by two
observed variables. In either case, the factor, its regression on the ob-
served variables, and the errors of measurement are of primary interest
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in CFA analyses; not of interest is the impact of &, on m, or the residual
error associated with the prediction of n, from §&,.

3.2. A Formal Explanation of the LISREL CFA Model

In Section 1.3 we learned that statistical models can be expressed in two
basic formats: diagrammatic or equation. Furthermore, the equation for-
mat can be expressed either in matrix form or as a series of regression
statements. Let’s now reexamine the CFA model within the framework
of each of these formats using a simple two-factor model. To provide you
with a thorough understanding of all matrices and their elements, this
model will be expressed first as an all-X model, and then as an all-Y
model since examples of both are found in the literature.

Suppose that we have a two-factor model of self-concept: Let the two factors be
general self-concept (GSC) and academic self-concept (ASC). Suppose that each
factor has two observed variables: Let the two measures of GSC be the General
Self subscale of the Self Description Questionnaire (SDQGSC; Marsh & O’Neill,
1984), and the Self-esteem Scale (SESGSC; Rosenberg, 1965). Let the two mea-
sures of ASC be the Academic Self-concept subscale of the Self Description Ques-
tionnaire (SDQASC) and the Self-concept of Ability Scale (SCAASC); Brook-
over, 1962).

error — SDQGSC

GSC

error — SESGSC

error——— SPQASC

error —{ SCAASC

FIGURE 1.2. Hypothesized CFA Model of Self-Concept.
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3. The LISREL CFA Model 11

A schematic presentation of this model is shown in Figure 1.2. Here,
then, we have a two-factor model consisting of GSC and ASC, with each
factor being measured by two observed variables. The observed mea-
sures for GSC are SDQGSC and SESGSC; for ASC they are SDQASC
and SCAASC. The curved two-headed arrow indicates that GSC and
ASC are correlated.

Now, let’s translate this model into LISREL notation and reexamine it
in terms of a schematic presentation and in terms of a set of equations.
We'll look first at the all-X model.

(a)Expressed in schematic form (as in Figure 1.3), § and &, represent
GSC and ASC, respectively; the curved arrow indicates that they are
correlated. A, and \,, represent the regression of £, on X, and X,, re-
spectively; similarly, A\, and \,, represent the regression of &, on X,
and X,, respectively. X, and X, represent SDQGSC and SESGSC, the
observed measures of GSC; X, and X, represent SDQASC and
SCAASC, the observed measures of ASC. 3, to 3, represent errors of
measurement associated with SDQGSC to SCAASC, respectively.

(b)Expressed in equation form:

(i) As a series of regression equations, Figure 1.4 holds.
(ii) In matrix form, Figure 1.5 holds.

b —> X Ay
£
&) — Xy Aa
P
% %s A3
54_.>. X4 >‘42

FIGURE 1.3. LISREL All-X CFA Model of Self-Concept.

spssYA)i@yahoo.com
Gkl Jilal 545520



WWW.SPSS-pasw.ir
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17 111 1
R="2af %
Xy= At v
= M % ot %,

FIGURE 1.4. Series of Regression Equations Representing the Two-Factor
Model of Self-Concept Shown in Figure 1.3.

X = Ay g + 6
L _ - o
X X131 ° €1 1
¢ A 0 8
2 2
_ 21 .

X3 0 A3p P 65
Xy 0 Mg 4

FIGURE 1.5. Equation of Vectors (A always remains in matrix form with the
specification of two or more factors) Representing the Two-Factor Model of Self-
Concept Shown in Figure 1.3.

As presented in Figure 1.5, both the number of factors (£s) and the
measurement errors (8s) are expressed as vectors. In the analysis of the
CFA model, however, these parameters are estimated in the appropriate
variance-covariance matrix. The expansion of this equation is presented
in Figure 1.6.

X = A X P + O
1 A O 611
% App O 11 . 0 %2
X4 0 xj3p %21 %22 ° 0 %33
0 0 6
X, 0 2y ° 44

FIGURE 1.6. Equation of Matrices Representing the Two-Factor Model of Self-
Concept Shown in Figure 1.3.
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3. The LISREL CFA Model 13

3.3. Additional Points of Explanation

1.By convention, the numbering of matrix elements is such that the first
number represents the row, while the second represents the column.
Thus &,, indicates an element in the second row, first column of the
matrix ®.

2.The A matrix is often referred to as the factor-loading matrix because
it demonstrates the pattern of how each observed variable is linked to
each factor. For example, \,, and \,, indicate that the first two elements
in the regression matrix represent X, and X,, respectively, and that both
load on Factor 1 (GSC); the two zeros in the same column indicate that
no other variables load on Factor 1.2 Of course the reverse pattern holds
for Factor 2.

3.Recall from Section 2.2 that the factor variance-covariance matrix for
the &s was identified as the ® matrix. Thus, while the vector of &s indi-
cated that there were two factors, the variance for these factors (¢,,,
&,,) and the covariance between them (¢,,) represent elements in the ®
matrix.’

4.Recall from Section 2.2 that the error variance-covariance matrix for
the 3s was the O, matrix. Thus, the error variances are represented by
05, t0 65, respectively. One assumption underlying the CFA model is
that errors of measurement are assumed to be uncorrelated; the zeros
therefore indicate that no parameters representing error covariances
will be estimated. More details regarding assumptions will be addressed
in Chapter 2.

5.Recall from Section 2.2 that the variance-covariance matrix for the re-
sidual terms ({) was identified as ¥ in the general model. However,
since the CFA model does not include causal relations between & and
m, the two latent factors, the residual is reduced to zero. Thus, correla-
tions among the latent factors in the all-Y model (ns) are estimated in
the ¥ matrix.

Let’s now examine the same two-factor model expressed as an all-Y
model

(a)Expressed in schematic form, it would look like Figure 1.7.

8Note that if this had been a one-factor model, the A and ® matrices would have
been expressed as vectors.

°Had no correlation been specified between the two factors (i.e., they were
considered to be orthogonal), the ¢,, would have been specified as zero—

d)ll

0 &xn].
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Y, |le—c¢,
Y, re——€3
Y, e———¢ ,

FIGURE 1.7. LISREL All-Y CFA Model of Self-Concept.

(b)Expressed in equation form, it would look like one of the following:
(i) As a series of regression equations (Figure 1.8).
(ii) In matrix form (ns and es as vectors, Figure 1.9).
(iii) In expanded matrix form (Figure 1.10).

Y= M)y g
v, = oy ot
L PO R
L N T

FIGURE 1.8. Series of Regression Equations Representing the Two-Factor
Model of Self-Concept Shown in Figure 1.7.
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Ay
A1 °
A2 0
0 Ass
0 A

.

4. Summary

€1
€2
€3

€4

FIGURE 1.9. Equation of Vectors (except for A,) Representing the Two-Factor
Model of Self-Concept Shown in Figure 1.7.

Y = AY v + O
Y A7 O ] 611
Aax O Yu 10 %
0 x5 Va1 Y22 o o o
O 2y 0 0 0 %
L L L n

FIGURE 1.10. Equation of Matrices Representing the Two-Factor Model of Self-
Concept Shown in Figure 1.7.

4. Summary

This chapter provided a basic working knowledge of LISREL symbols
and modeling procedures. An explanation of basic concepts related to
LISREL modeling was presented first; these included the distinction be-
tween observed and latent variables, the underlying purposes of statisti-
cal modeling in general, and factor analytic modeling in particular. The
composition of the general LISREL model was presented next, with the
components of the model being presented both mathematically and sche-
matically; related LISREL notation was introduced. Finally, a detailed
explanation of the LISREL CFA model was demonstrated with both all-
X and all-Y model specifications.
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2
Using the LISREL Program

The purpose of this chapter is to introduce you to the general format of
the LISREL program. Expanded comments regarding various aspects of
the input and output will be addressed in subsequent chapters that focus
on specific CFA model applications. Since this book is intended only as
a guide to using LISREL, it is limited to applications based on maximum
likelihood estimation. For applications based on other models and/or use
of other estimation techniques, the reader should refer to the LISREL
manual. In general, however, the reader is encouraged to use this book
in conjunction with the LISREL manual to ensure a thorough understand-
ing of the link between CFA modeling and the LISREL program.

The basic elements of the LISREL program are now outlined. We will
first examine specifications regarding the input of information and then
we will review the information provided on a standard output.

LISREL Input
1. Basic Rules

1.1. Keywords

The LISREL program is controlled by two-letter keywords that represent
both card and parameter names. Although these names may contain any
number of letters, only the first two are recognized by LISREL; all key-
words are separated by spaces or commas.

1.2. Control Cards

In order for the LISREL program to run, it must be provided with data,
along with four important pieces of information: title of problem run, data
specification (i.e., description of data being entered), model specification
(i.e., description of model to by analyzed), and output specification (i.e.,
type of information desired). This information is provided through four
basic control cards that must be included for every problem run; these
are as follows:
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1. TItle card.
2. DAta card.
3. MOdel card.
4. OUtput card.

The capitalized letters for each card represent the required keywords.
Except for the TI card, additional information is required within each of
the other categories in order to complete the specification requirements.
This information is provided by parameter specifications and additional
control cards. These four control cards require a fixed input position, as
listed earlier.

Now let’s examine, in more detail, each of these four major control
cards, their parameters, and supplementary control cards. For simplicity,
examples of input setups will be based on the model presented in Chapter
1 (see Figure 1.2); the sample size is arbitrarily chosen to be 400.

2. Problem Run Specification

The first card for each problem run must specify a title for the problem;
this is specified on the TI control card. Although there can be more than
one card (i.e., more than one line) of input, most users find it convenient
to limit the title to less than 79 characters (i.e., 79 columns); column 80
must be left blank. If more than one card is used, however, only column
80 on the last card needs to be left blank; the first 79 characters of the
title will be printed on each page of the output.

e.g. TI Multidimensionality of Self-concept

3. Data Specification

The second major control card is the DA card, which defines the data to
be analyzed. In order to provide these details, however, additional infor-
mation is provided by means of the following specifications:

NGroups = Number of groups for which data are available.
NInpvar = Number of input variables.
NObs Number of observations (i.e., sample size); if N is unknown
and raw data are being input, set NO = 0; the program will
compute N.
MAtrix = Type of matrix to be analyzed.
» KM for correlation matrix.
¢« CM for covariance matrix.
¢« MM for moment matrix.
e AM for augmented moment matrix.
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It is important to note, however, that the matrix to be analyzed may
differ from the one read into the computer as data input. For example,
the data may be input in the form of a KM, but you may wish to have
analyses based on the CM. LISREL can always compute the matrix to
be analyzed, regardless of the type of data that are input.

e.g. DANG=1 NI=4 NO=400 MA=KM

y
Cols 12 45........ .25

In this example, the DA card indicates that there is only one group to
be analyzed,' there are four input variables, the sample size is 400, and
the data are going to be entered in the form of a correlation matrix.

3.1. Further Specification of the Data

The DA card is further defined by four additional pieces of information;
each is entered on a separate line of input as follows:

(i) LAbels
7
Col 1
One label, eight characters or less, must be provided for each input
variable. The easiest way to provide this information is to enter the
variable names in free format. As such, they are entered in the same
order as the variables appear in the data set; each label is enclosed
in single quotes and separated by blanks. This format is indicated in
column 1 of the next card.

(i) Format in which variable labels are to be read. If the format is free,
as noted earlier, an asterisk (*) is placed in column 1.

(iii) The matrix form in which the data are being input. Two pieces of
information are required: the type of matrix and the particular form
of the matrix. Each piece of information is represented by a two-letter
keyword; both are entered on the same line, separated by a blank.
The choices are as follows:

Matrix Type Matrix Form
RA for raw data miatrix. FU for full matrix.
KM for correlation matrix. SY for symmetric matrix.

CM for covariance matrix.
MM for moment matrix.

'The default value for NG is 1.0. This means that it is not necessary to enter
NG =1; LISREL will automatically base the analyses on one group. The input
would then read: DA NI=4 NO=400 MA=KM.
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(iv) The information in the input format tells LISREL how each set of
numbers represents the variables in the data set. The input format
can be either fixed or free. In either case, LISREL reads all data row-
wise, from left to right.

Fixed Format. This format indicates that the data are to be read accord-
ing to a specific formula, a Fortran statement. It specifies the number and
location of columns occupied by each variable, in addition to the number
of decimal points included for each variable score, if any. A Fortran state-
ment is always parenthesized; the initial parenthesis is placed in column
1.

Free Format. This format indicates that the data are to be read as one
long string of numbers; no specific columns are linked to any variable.
The only requirement here is that each variable score must be separated
by a blank. When this type of format is used, an asterisk (*) is placed in
Column 1.

The above four lines are then followed by data entry.

Continuing with our example based on Figure 1.2, let’s look at the input
of this additional information using a Fortran statement and a free format.

e.g.(a) LA
*

‘SDQGSC’ ‘SESGSC’ ‘SDQASC’ ‘SCAASC’
KM SY
(4F3.2)

100

70100

50 55100

45 48 80100

This format indicates that there are four rows representing four vari-
ables in a symmetric matrix form. LISREL then reads each row from left
to right, counting three digits and then placing a decimal point to the left
of the last two digits. Blanks represent zeros and are therefore taken into
consideration in counting the three digits.

e.g. (b) LA
*

‘SDQGSC’ ‘SESGSC’ ‘SDQASC’ ‘SCAASC’
KM SY
*

1.00

.70 1.00

.50 .55 1.00
.45 .48 .80 1.00
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Here we have the same matrix of numbers but read in free format fash-
ion. In this form, blanks are used to separate score values.

e Hint
Remember to account for column 1 when formulating the Fortran state-
ment. Otherwise, you will get an error message that will in no way alert
you to the fact that this has not been done (e.g., the input matrix is not
positive definite). When using the free format, be sure to enter the first
1.00 in column 1.

3.2. Optional Input

Means and Standard Deviations. For certain problems, it may be neces-
sary to include the mean and standard deviation values for each variable.
This information can be included by first adding an ME or SD card, fol-
lowed by a free format card (*), followed by the actual values for each
variable. In other words, a minimum of three lines is required for the
input of means and for the input of standard deviations. This information
is entered, beginning with column 1. When both means and standard devi-
ations are added, the three lines related to means are added first, as
shown later. This information follows immediately after entry of the data
matrix.

e.g. ME
*

76.41 52.90 55.60 49.22
SD

*

10.10 9.05 4.56 7.80

Selection of Variables. For a variety of reasons, the user may wish to
use only certain variables from those listed on the LA card. This is easily
done by adding a SElect card after the row of SDs and listing the variables
(either by name or number) in the order in which they are to be read; this
is followed by a slash (/); the slash indicates that certain variables are
being eliminated from the analyses.

Suppose that in our previous example we did not wish to include the
variable ‘SESGSC’ in the analyses. We then eliminate it by entering a
select card as:

SE 134/

The SE card is also used to change the order in which the variables are
read into the analyses. In the previous example, the order of the variables
is being read automatically in the order, 1 2 3 4. Therefore, an SE card is
not required. But if the cards are to read in a different order than the way
they have been input, an SE card is required. For example,

SE1324
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This indicates that the variable ‘SDQASC’ is to be read after ‘SDQ-
GSC’ instead of after ‘SESGSC.’

e Hint
1. If all variables are being used, the SE card is not required.
2. If the SE card has been used to indicate missing variables, and the
slash has not been included, LISREL will print an error message. How-
ever, the error message may not relate in any way to the fact that the
slash has been omitted. The fact that the problem did not run should
alert you to the fact that something is not right.

4. Model Specification

The third major control card is the MO card, which specifies the model
to be analyzed. Model specification involves four pieces of information:

1.The number of observed variables in the model (Xs or Ys).

2.The number of latent variables in the model (§s or ms). LISREL reports
&s as KSIs, and the ms as ETAs.

3.The form of each matrix to be analyzed.

4.The estimation status of each matrix.

We turn now to each of these components.

4.1. Observed Variables

Since we are only interested in CFA models as presented in Chapter 1,
model specifications will include either X variables or Y variables—but
not both. The keywords are as follows:

NX = number of X variables in the model.
NY = number of Y variables in the model.

4.2. Latent Variables

As noted in Chapter 1, a CFA model specification will include either &s
(KSIs) or ns (ETAs)—not both. The keywords are as follows:

NK
NE

number of &s in the model.
number of ms in the model.

[

4.3. Basic Matrix Forms
To understand the CFA applications presented in this book, five basic
matrix forms need to be known; these are presented in Figure 2.1.
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i X X X X ]
X X X X
X X X X
X X X X
Full Matrix
i X ] i X ]
X X X
X X X X
X X X X X
L _ L .
Symmetric Matrix Diagonal Matrix
) 1 0 0 0 | i 0 0 0 0 ]
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
i 0 0] 0 1 1 i (o] 0 0 0 |
Identity Matrix Zero Matrix

FIGURE 2.1. Basic Matrix Forms in LISREL.

Several points need to be noted here with respect to the treatment of
these matrices in the LISREL program. These are as follows:

1. The Xsin the FU, SY, and DI matrices represent values that are stored
in the computer. This means that:

(a) If a matrix is specified as SY, one cannot refer to elements in the
upper triangle of the matrix. As far as LISREL is concerned, these
elements do not exist.

(b) If a matrix is specified as DI, one cannot refer to off-diagonal ele-
ments. Again, these elements are not stored in the computer.

2. If a matrix is stored as an ID or ZE matrix, one cannot refer to any
element in these matrices. This is because neither matrix is stored in
the computer.

4.4. Matrix Estimation Status

As shown in Figure 1.3, if the model to be analyzed is an all-X CFA
model, then only the lambda-X (LX), phi (PH), and theta-delta (TD) ma-
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trices are of interest. Alternatively, if an all-Y model is specified, then
the lambda-Y (LY), psi (PS), and theta-epsilon (TE) matrices are of inter-
est. In either case, the status of each of the three matrices must be speci-
fied. This means that LISREL parameters representing these matrices
must be specified according to whether or not they are to be estimated,
and if they are, then how they are to be estimated. That is, they are speci-
fied as being FRee, Flxed, or EQual to other parameters in the model.

FRee parameters indicate that these values are unknown and therefore
will be estimated by the program.

FIxed parameters are assigned some particular value by the investiga-
tor; they are therefore not estimated by the program.

EQual parameters indicate that they have been constrained to have the
same estimated value as certain other parameters in the model. LISREL
estimates the initial parameter; all other parameters that are constrained
equal to it will thus have the same estimated value.

Specification of the status of a matrix means that all elements in that
matrix have the same status.

e.g. LX=FU,FI specifies that Lambda-X is a full matrix with all ele-
ments fixed to some value, to be input later in the setup. The
default value for fixed parameters is 0.0. This means that if no
value is specified by the investigator, the value will be automati-
cally fixed at 0.0 by the program.

e.g. TD=DI,FR specifies that Theta Delta is a diagonal matrix with
all elements free to be estimated by the program.

Before proceeding, we need to make a slight digression in order to say
a few words about Default Values. All computer programs operate with
certain default values. What this means is that when a particular specifi-
cation is omitted from an input setup, the program automatically imple-
ments a fixed value that has been preselected on the basis of most com-
mon use. With LISREL, default values are associated with particular
matrix specifications.

The advantage of default values is that they can often reduce, substan-
tially, the amount of time required to input the specification information.
In order not to confuse you at this point, however, example inputs will
specify all parameters and will not rely on the default values.

Default values for the specification of parameter matrices for CFA
models are presented in Table 2.1. Thus, it can be seen that if LX only
appeared on the MO card, the program would, by default, treat it as a full
matrix with elements fixed to 0.0 (unless otherwise specified later in the
input).
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TABLE 2.1. Default Values for Parameter Matrices in LISREL CFA Models

Default
Greek LISREL Default mode
Matrix name notation notation form (fixed/free)
Lambda-X A, LX FU FI
Lambda Y A, LY FU FI
Phi [ PH SY FR
Psi v PS SY FR
Theta-delta O, TD DI FR
Theta-epsilon [SH TE DI FR

4.5. Additional Model Specification

In Section 4.4., we learned how to specify the status of an entire matrix.
However, in most cases, the model will require further refinement. This
is accomplished by specifying certain matrix elements as fixed, free, or
constrained equal to other parameters. As such, three additional control
cards come into play. We turn now to these input details.

The Estimation Status of Matrix Elements. Regardless of the status of a
matrix, any of its elements can be specified to have a different status.
That is to say, although the matrix may be specified as fixed (free), any
of its elements may be individually specified as free (fixed). Matrix ele-
ments are identified by parenthesizing their coordinate points (i.e., their
intersecting row and column numbers as shown in Chapter 1), which are
separated by commas.

e.g. MO NX=4 NK=2 LX=FU,FI PH=SY,FR TD=DI,FR
FR LX(2,1) LX(4,2)
FI TD(1,1)

This example specifies that the model has four X (observed) variables
and two & (latent) variables. LX is a full matrix with its elements fixed
to some value; two elements, however, are to be freely estimated. This
specification is depicted in Figure 2.2

MO NX=4 NK=2 IX=FUFI

FR IX(2,1) IX(4,2)

&1 £2 £1 £2
C1x (FD) IX,, (FT) | 0, (fixed) A, (fixed) ]
N IX,, (FR) IX,, (FI) L |21 (free) , (fixed)
IX,, (FT) IX,, (FI) * | ay, (fixed) Ay, (Fixed)
IX,, (FT) X, (FR) A, (Fixed) A, (free)
—(a) Matrix with LISREL Notation ) (b) Matrix with Greek Notation B
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g1 €2
1.0 0.0
A 0.0
N 21
X 1o.0 1.0
0.0 Ao

(c) Matrix with Assigned Values for Fixed Parameters

FIGURE 2.2. The Specified LX Matrix.

The assigned values in Figure 2.2(c) need some elaboration. Since we
are working with a CFA model, we are postulating that certain observed
variables will load on particular latent variables. In this case, we are hy-
pothesizing that \, and \,, load on Factor 1 (§,), and that \,, and A\, load
on Factor 2 (£,). Thus, \;,, Ay, A2, and \,, are fixed to zero. For purposes
of statistical identification® and in order to establish the scale of metric,
one of the free parameters being estimated for each factor should be fixed
to 1.00. Although most investigators fix the first of a set of As to 1.00, this
decision is an arbitrary one.

Similarly, TD is specified as a diagonal matrix with all elements except
TD(1,1) free to be estimated. As shown in Figure 2.3, only the diagonal
elements are of interest, therefore the off-diagonal parameters have been
fixed to zero; 3,, has been fixed to .20.

M0 NX=4 NK=2 TD=DIR

| FI TD(1,1)

R % X3 % _

,, (FI) TD), (FI) TD,5 (FI) TD,, (FI)
o | P D My (R My (), (D)

™,, (FI) TD,, (FI) TD,, (FR) D, (FI)

™,, (FI) T,, (FI) T,, (FI) ,, (FR)

(a) Matrix with LISREL Notation

FIGURE 2.3. The Specified TD Matrix.

2A discussion of identification is beyond the scope of this book; for an extensive
discussion of this topic see e.g., Long, 1983; Saris & Stronkhorst, 1984.
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X X X X

1 2 3 4 ~
—611 (Fixed) 8, (fixed) 8, (fixed) 6, (fixed)
0, §,, (fixed) 8,, (free) 8,5 (fixed) 8,4 (fixed)
8, (fixed) 8,, (fixed) &, (free) 55, (fixed)
8,, (fixed) 8y, (fixed) 8. (fixed) 8,4 (free) |

(b) Matrix with Greek Notation

X X Xy Xy
[ 0.2 0.0 0.0 0.0
5
o, 0.0 o 0.0 0.0
5
0.0 0.0 23 0.0
5

0.0 0.0 0.0 14 |

(c) Matrix with Assigned Values for Fixed Parameters

FIGURE 2.3. Continued.

Alternatively, the preceding example could be specified as follows:

e.g. MO NX=4 NK=2 LX=FU,FR PH=SY,FR
TD=DIFI
FI LX(1,1) LX(3,1) LX(4,1) LX(1,2) LX(2,2) LX(3,2)
FR TD(2,2) TD(3,3) TD(4,4)’

A review of Figures 2.2 and 2.3 will quickly demonstrate that the two
model specifications are identical.

* Hint
It is now easy to see that there is more than one way to specify a model.
For the sake of expedience, it is best to specify the matrix in accordance
with the desired status of most of its elements. In other words, if most
of the elements are to be estimated, specify the status of the matrix as
‘free.” On the other hand, if most elements are fixed parameters (see,
e.g., Figures 2.2 and 2.3), specify the matrix as ‘fixed.” In this way, less
input is required in specifying the status of individual matrix elements.

*Where a consecutive range of values is to be estimated, the first and last elements
can be hyphenated, e.g., TD(2,2)-TD(4,4).
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Assigning Values for Fixed Parameters. Inthe case where a fixed param-
eter is to have a nonzero value rather than the default value of 0.0, the
VAlue and/or STart control cards are used. The VA and ST cards are
equivalent, and may be used synonymously. The keyword on either card
is followed by a number, which is taken as the assigned value for the
accompanying list of matrix elements.

e.g. FI LX(1,1) LX(3,2)
VA 1.0 LX(1,1) LX(3,2)
or ST 1.0 LX(1,1) LX(3,2)

This example indicates that elements (1,1) and (3,2) in the LX matrix
are to be fixed to a value of 1.0.

e Hint
For convenience, it is often advisable to use the VA cards to indicate
assigned values for fixed parameters, and ST cards to indicate starting
values for free parameters.

Beginning with the LISREL V version, the program can generate its
own start values. However, the user has the option to enter values if he
or she wishes. In this case, the ST control card is used to specify starting
values for the estimation of free rather than fixed parameters.

However, readers are urged not to rely too heavily on the program-
generated start values. This feature appears to work well with simple
models that have estimated values close to the initial LISREL estimates.
However, as soon as model specifications become more complex or when
estimates are not close to the initial LISREL estimates, the program often
abends (i.e., terminates prematurely).

It is recommended, therefore, that the user always enters his or her
own start values. These values may be derived from a preliminary run
in which only the initial estimates are requested. However, a quick and
reasonable rule of thumb for a set of CFA start values is as follows: \s
= 7.00; és or Ps (variances) = .50; &s or ¥s (covariances) = .20; ds or
es (variances) = .10.

e Hints
In selecting start values:
1. Be sure to make diagonal values larger than off-diagonal values or
you will get an error message that ‘‘the information matrix is not pos-
itive definite.”’
2. If the program abends, consider the possibility of negative start val-
ues for some of the As and s (covariances).
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5. Output Specification

Decisions regarding output fall into two categories: method of parameter
estimation and information related to analyses. This information is speci-
fied on the OU card.

S.1. Method of Parameter Estimation

The estimation of parameters may be obtained by five different methods;
these options involve the use of: instrumental variables (IV), two-stage
least squares (TSLS), unweighted least squares (ULS), generalized least
squares (GLS), and maximum likelihood (ML). Since the underlying as-
sumptions differ for each of these methods, the user is strongly advised
to select the one most appropriate for his or her data. The IV and TSLS
methods are fast and are not based on an iterative process; they can be
used conveniently with large samples. The ULS, GLS, and ML methods,
on the other hand, compute estimates iteratively, using the IV and TSLS
estimates as start values; these constitute the LISREL automatic start
values.

The user selects any one of the five estimation procedures and enters
the keyword on the OU card. In the selection of ULS, GLS, and ML,
LISREL prints the initial and the final estimates. The keywords and the
resulting output are as follows:

IV = only the IV estimates are computed.

TS = only the TSLS estimates are computed.

UL = both the IV and ULS estimates are computed.
GL = both the TSLS and GLS estimates are computed.
ML = both the TSLS and ML estimates are computed.

Il

I

Default = ML

This means that if no estimation method is entered on the OU card,
parameters will automatically be estimated using ML. Initial esti-
mates based on IV are also provided.

° Hint
If the user wants to enter his or her own start values but has no idea
of values, it can be helpful to obtain these from the program by request-
ing only the initial estimates. This can be done by entering the keyword
IV on the OU card; this is equivalent to TS. If more than one of these
keywords is entered on the OU card, LISREL will only recognize the
last one.

5.2. Information Related to Analyses

Although LISREL provides a standard output (see Figure 2.4), the user
can select from a number of options regarding additional information to
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be printed on the output. The appropriate keyword is simply added to the
OU card. The options available, together with the accompanying key-
words, are as follows:

PT = Print technical output.

SE = Print standard errors.

TV = Print t-values.

PC = Print correlations of estimates.

RS = Print 3, residuals S-3, normalized residuals, Q-plot.

EF = Print total effects.

VA = Print variances and covariances.
MR = Equivalent to RS, EF, and VA.

MI = Print modification indices.

FS = Print factor scores regression.

FD = Print first derivatives.

SS = Print standardized solution.

AL = Print all output.

NS = No automatic start values.

TO = Print with 80 characters per record; default: 132 characters.
ND = Number of decimal places to be printed (0-8); default: ND =3.
TM = Maximum number of CPU-seconds allowed for problem; default:

TM =60.

The meaning and interpretation of the optional output are discussed as
they relate to specific applications as presented in subsequent chapters.

e Hint

1. Be sure to add NS to the OU card when entering your own start
values or you will get a strange error message that is in no way related
to the problem.

2. The LISREL program is expensive in that it uses a lot of CPU time.
To cut costs, only request output that is directly of use to you at any one
step in your analysis. For example, it only makes sense to request the
standardized solution after you have achieved the final best-fitting
model.

LISREL Output
1. Standard Output

LISREL provides a standard output that is printed whether or not other
selected options have been entered. It includes the following information:
log of read control cards, the title, the parameter listing, the parameter
specifications, the matrix to be analyzed, the initial estimates, the LIS-
REL estimates (ML or ULS), and the overall goodness-of-fit measures.
Figure 2.4 lists the standard output based on our hypothetical two-factor
model presented in Figure 1.3.
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FIGURE 2.4. LISREL Standard Output for Model in Figure 1.3.

LISREL VI
(1) Confirmatory Factor Analysis
Iog read for LISREL Control cards:
DA NI =4 NK=2 IX=F,FI PH=SYFR TD=DIFI
FR 1X(2,1) IX(4,2)

VA 1.0 IX(1,1) IX(3,2)

ST .7 IX(2,1) IX(4,2)

ST .5 PH(1,1) PH(2,2) PH(3,3) PH(4,4)

ST .2 PH(2,1) PH(3,1) PH(4,1) PH(3,2) PH(4,2) PH(4,3)
ST .3 TD(1,1) - TD(4,4)

oU NS

(2) Confirmatory Factor Analysis

Number of input variables 4
Number of Y - variables 0
Nunber of X - variables 4
Nurmber of ETA - variables 0
Number of KSI - variables 2
Number of observations 400

Model specification
Iambda x Full, fixed PHI Symm, Free
Theta Delta Diag., Free

Output requested

Technical output No
Standard Errors No
T-values No
Correlations of Estimates No
Residuals No
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Total Effects No
Variances and Covariances No
Modification Indices No
Factor Scores Regressions No
First Order Derivatives No
First Order Derivatives No
Standardized Solution No

(3) Confirmatory Factor Analysis
Correlation Matrix to Be Analyzed
SDOGSC SESGSC SDOASC SCAASC

SDQGSC  1.000

SESGSC .701 1.000
SDQASC .504 .551 1.000
SCAASC  .452 .480 .804 1.000

DETERMINANT = 0.520102D-03

(4) Confirmatory Factor Analysis

Parameter Specifications

ILambda X

KSI 1 KSI 2
SDQGSC 0 0
SESGSC 1 0
SDQASC 0 0
SCAASC 0 2
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PHI
RSI 1 KST 2
KSI 1 3
KSI 2 4 5
THETA DELTA
SDOGSC SESGSC SDQASC SCAASC
6 7 8 9
(5) Confirmatory Factor Analysis
Starting Values
ILambda X
KSI 1 KSI 2
SDQGSC  1.000 0.0
SESGSC .700 0.0
SDQASC 0.0 1.000
SCAASC 0.0 .700
PHI
KSI 1 KSI 2
KST 1 .500
KST 2 .200 .500
THETA DELTA
SDOGSC SESGSC SDOASC SCAASC
.100 .100 .100 .100

SQUARED MULTIPLE

CORREIATIONS FOR X-VARIABLES

SDOGSC SESGSC SDOASC SCAASC
.700 .700 .700 .700

TOTAL COEFFICIENT OF DETERMINATION FOR X-VARIABLES IS .997.
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(6) Confirmatory Factor Analysis

LISREL ESTIMATES (MAXIMUM LIKELTHOOD)

IAMBDA X
KSI 1 KSI 2
SDQGSC  1.000 0.0
SESGSC .819 0.0
SDQASC 0.0 1.000
SCAASC 0.0 .973
PHI
KsT 1 KST 2
KSI 1 .762
KSI 2 .209 .657
THETA DELTA
SDOGSC SESGSC SDOASC SCAASC
.238 .192 .306 .119

SQUARED MULTIPLE CORREIATIONS FOR X~VARIABLES

SDOGSC SESGSC SDOASC SCAASC
.762 .511 .808 .694

TOTAL COEFFICIENT OF DETERMINATION FOR X-VARIABLES IS .998.
MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL:

CHI-SQUARE WITH 6 DEGREES OF FREEDOM IS 22.57 (PROB. IEVEL = 0.0).

GOODNESS OF FIT INDEX IS 0.875.

ADJUSTED GOODNESS OF FIT INDEX IS 0.701

ROOT MEAN SQUARE RESTDUAL IS 0.032.
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2. Error Messages

Errors are inevitable, regardless of how familiar someone is with a com-
puter package. Usually, an error message provides some clue as to the
location of the error and how it might be corrected. Unfortunately, this
is not always the case with LISREL; as such, the link between the mes-
sage and the problem is often remote. In most cases, these seemingly
bizarre messages are related to simple syntax errors; that is, errors that
result from such things as omitting a symbol (e.g., slash on the SE card),
omitting a space or comma (e.g., LX=FUFI), or misspelling a keyword.

Thus, the first thing to do when confronted with an error message is to
reexamine your input cards, looking very carefully for syntax errors.
Some common mistakes you might make are:

» Using keywords that don’t conform to the LISREL naming conven-
tions.

e Omitting required slashes, equal signs, commas, or spaces.

e Leaving pairs of parentheses or apostrophes unmatched.

e Placing the TI, DA, MO, or OU cards in the wrong order.

 Inputting a data correlation matrix and forgetting to account for column
1.

» Using lower-case, rather than upper-case lettering.

¢ Using start values that are too far away from the actual parameter val-
ues. This can happen, for example, if the start value is entered as a
positive number but the actual value is negative.

e Forgetting to put NS on the OU card when you have input your own
start values.

Summary

This chapter outlined basic information related to using the LISREL com-
puter program for the analysis of CFA models. The focus of the chapter,
for the most part, concentrated on particulars related to program input.
As such, details of program setup were examined separately for each of
the four major input components: problem run specification, data specifi-
cation, model specification, and output specification. Along the way,
hints were provided in an attempt to help the user make the most efficient
use of his or her time. An example of the standard LISREL output was
provided based on the hypothetical model presented in Figure 1.3. Fi-
nally, suggestions for interpreting and preventing error messages were
provided.
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Application 1: Validating a Theoretical
Construct

Our first application, in broad terms, tests the hypothesis that adolescent
self-concept (SC) is a multidimensional construct consisting of four fac-
tors: general SC(GSC), academic SC (ASC), English SC (ESC), and
mathematics SC (MSC). The theoretical basis for this hypothesis derives
from the hierarchical model of SC proposed by Shavelson, Hubner, and
Stanton (1976). (For details of the study related to this application, see
Byrne & Shavelson, 1986.)

Although a number of studies have supported the multidimensionality
of SC, there have been counterarguments that SC is a unidimensional
structure. Thus to test the multidimensionality of SC against the counter-
hypothesis, the primary hypothesis is tested against two alternative
hypotheses: that SC is a two-factor structure consisting of an academic
component (ASC) and a general component (GSC) and that SC is a unidi-
mensional construct.

We now examine each of these hypotheses separately, and in more
detail.

Hypothesis 1: Self~-Concept Is a Four-Factor Structure

The model to be tested in Hypothesis 1 postulates a priori that SC is a
four-factor structure consisting of GSC, ASC, ESC, and MSC. It is pre-
sented schematically in Figure 3.1

To work with LISREL, we must now translate what we see in the
model into a set of computer statements that define the CFA model to be
tested. Let’s begin by dissecting the model presented in Figure 3.1 and
listing what we observe.

. There are four SC factors (§,-£,).

. The four factors are intercorrelated (¢s).

. There are 12 observed measures (Xs).

. These observed measures load onto the factors in the following pat-
tern: X,—X; load onto Factor 1; X,—X, load onto Factor 2; X—X, load
onto Factor 3; and X,,~X,, load onto Factor 4.

BN -
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SDQGSC
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FIGURE 3.1. Hypothesized Structure of Four-Factor Model of Self-Concept.

5. Each X variable loads on one and only one factor.
6. Measurement error is taken into account for each X variable (3s).
7. The errors of measurement are uncorrelated.

Summarizing these observations, we can now present a more formal
description of our hypothesized model. As such, we can say that the CFA
model presented here hypothesizes a priori that:
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(a) SC responses can be explained by four factors: GSC, ASC, ESC, and
MSC.

(b) Each subscale measure has a nonzero loading on the SC factor that it
was designed to measure (termed a ‘‘target loading’’) and a zero load-
ing on all other factors (termed ‘‘nontarget loadings’’).

(c) The four SC factors, consistent with the theory, are correlated.

(d) Error/funiqueness’ terms for each of the measures are uncorrelated.

Table 3.1 summarizes the pattern of parameters to be estimated for the
factor loading (lambda X; A,), factor variance-covariance (phi; ®) and
error variance-covariance (theta delta; ©;) matrices. The \s, ¢s, and 8s
represent the parameters to be estimated; the Os and 1s, the fixed parame-

TABLE 3.1. Pattern of Estimated Parameters for Hypothesized Four-Factor CFA
Model

Factor Loading Matrix (Ay)

GSC ASC ESC MSC
Measure X (& l) (& 2) (¢ 3) (¢ 4)
SDQGSC 1 1.00 .0 .0 .0
APIGSC 2 A 21 .0 .0 .0
SESGSC 3 A 31 .0 .0 .0
SDQASC 4 .0 1.00 .0 .0
APIASC 5 .0 A 52 .0 .0
SCAASC 6 .0 A62 .0 .0
SDQESC 7 .0 .0 1.00 .0
APIESC 8 .0 .0 )‘83 .0
SCAESC 9 .0 .0 >\93 .0
SDQMSC 10 .0 .0 .0 1.00
APIMSC 11 .0 .0 .0 )\11’ 4
SCAMSC 12 .0 .0 .0 )\12,4

"The term uniqueness is used in the factor analytic sense to mean a composite
of random measurement error and specific measurement error associated with
a particular measuring instrument; in cross-sectional studies, the two cannot be
separated (Gerbing & Anderson, 1984).
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TABLE 3.1. Continued

Factor Variance-Covariance Matrix ($)

GSC ASC  ESC MSC
(%19) (920 (833) (%)

GSC o,
ASC b bys
ESC %31 b2 433
Msc 41 %42 %43 %44
Error Variance-Covariance Matrix ©;)

oK KX X X X X X X, X, Xp
X1 9511 .0 .0 . .0 0 0 0 .0
X, .0 85,.0 .0 .0 .0 .0 .0 .0 .0 .0 0
X, .0 .0 8. .0 .0 .0 .0 .0 .0 .0 .0 .0
xa 0 0 .0 8, .0 .0 .0 .0 .0 .0
X, .0 .0 .0 .0 85,.0 .0 .0 .0 .0 .0 .0
¥, .0 .0 .0 .0 .0 85,.0 .0 .0 .0 .0 .0
X, 0 .0 .0 .0 .0 .0 85 .0 .0 .0 .0 .0
X, -0 .0 .0 .0 .0 .0 .0 88 .0 .0 .0 0
X, .0 .0 .0 .0 .0 .0 .0 .0 Bz .0 .0 0
X 0 0 .0 .0 .0 .0 .0 .0 .0 800 .0 0
X, 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 0611 11 *O
X, 0 .0 .0 .0 .0 .0 .0 .0 .0 0 .0 6512'12

ters. For purposes of identification, the first of each congeneric set’ of
SC measures was fixed to 1.0.

2A set of measures is congeneric if they all purport to assess the same construct,
except for errors of measurement (Joreskog, 1971b).
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1. LISREL Input

Now we are ready to translate this information into LISREL language,
which is needed in setting up the input statements describing our postu-
lated model. The basic LISREL input for this model (Model 1), including
the data, is presented in Table 3.2. The data are in the form of a correla-
tion matrix.?

Although the transition from Table 3.1 to Table 3.2 is fairly straightfor-
ward, a few words of explanation are in order.

1. NI=15—There are 15 instead of 12 input variables because in the
original study, the analyses included three achievement measures, la-
beled as ‘GPA,” ‘ENG,’ and ‘MATH.’

2. The SE card was used as a consequence of three changes required
in reading the data correlation matrix. These are:

(a) We do not want to include the variables GPA, ENG, and MATH (13,
14, and 15, respectively).

TABLE 3.2. LISREL Input for Model 1

CONFIRMATORY FACTOR ANALYSIS INITIAL MODEL
OA NI=15 NO=996 MA=KM
LA

*S5DQGSC® *SDQASC® °*SDQRESC® °*SDQMSC® *APIGSC?® *SESGSC® *APIASC® °*SCAASC®
PAPIESC® ®SCAESC® ?APIMSC®' °SCAMSC® °*GPA® "ENG® ?MATH®

100

3011000

289 3881000

170 453 0121C00

630 266 227 2001000

786 306 299 225 6351000

322 519 339 346 579 5371000

216 675 343 472 216 283 5451000

156 442 705 014 190 190 440 3691000

1283 470 543 069 131 174 396 589 6271000

177 475 066 864 270 257 426 489 142 0961000

135 424 027 828 188 187 367 577 028 146 3061000

010 506 162 395 006 063 374 661 147 375 321 4421000
=003 457 219 236-020 039 326 523 261 541 182 241 7941000
=017 349 057 562 001 034 262 489 039 164 477 624 739 5141000
SELECTION

1 56 238 39 10 4 11 12/
M3 NX=11 NK=4 LX=FU PH=SY TD=DI
FR LX(2e1) LX{3s1) LX(5s2) LX{7»3) LX(8s3) LX{10s4) LX(1154)
ST 1.0 LX(1s1) LX(492) LX(6s3) LX(9+4)

ST o7 LX{(251) LX(3,1) LX(552) LX(7s3) LX(8s3) LX(10s4) LX(1154)
5T o5 PH(1s1) PH{2:2) PH(3+3) PH(4s4)

5T o2 PH{2s1) PH(3»1) PH{3:2) PH(4s1) PH(4:2) PH(4,3)
3T 3 TO(1le1)-TD(11s11)
OQU NS SE TY RS MI

*Correlations were computed using the SPSS program based on pairwise deletion
of missing data. Subsequent to these analyses, however, I have since found good
reason to base my analyses on correlation matrices derived from listwise deletion
of missing data. I strongly recommend the latter, since it can often eliminate LIS-
REL convergence problems.
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(b) The correlation matrix was computed using an ordering of the vari-
ables that differed from their order of input (i.e., SDQGSC, APIGSC,
SESGSC, SDQASC, APIASC, SCAASC, SDQESC, APIESC,
SCAESC, SDQMSC, APIMSC, SCAMSC).

(c) A preliminary exploratory factor analysis of the API revealed the Stu-
dent Self subscale (measuring ASC) to be problematic; only 10 of the
25 items loaded >0.25 on the ASC factor. Subsequently, this subscale
was deleted from the analyses as one measure of ASC. Elimination of
the APIASC led to two important alterations to the pattern of esti-

TABLE 3.3. Revised Pattern of Estimated Parameters for Hypothesized Four-
Factor CFA Model

Factor Loading Matrix (Ay)
GSC ASC ESC MSC
Measure X (g (€,) (€3) (£ ,4)
SDQGSC 1 1.00 .0 .0 .0
APIGSC 2 A 21 .0 .0 .0
SESGSC 3 by 31 0 .0 0
SDQASC 4 .0 1.00 .0 .0
SCAASC 5 .0 A 52 .0 .0
SDQESC 6 .0 .0 1.00 .0
APIESC 7 .0 .0 by 73 .0
SCAESC 8 .0 .0 A 83 .0
SDQMSC 9 .0 .0 .0 1.00
A
APIMSC 10 .0 .0 .0 10,4
A
SCAMSC 11 .0 .0 .0 11,4
Factor Variance-Covariance Matrix ()
GSC ASC ESC MSC
(619 (92) (933 (%)
GSC ¢1l
ASC 1 %22
ESC b31 432 ¢33
MSC 41 %42 %43 %44
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Error Variance-Covariance Matrix (66)

SR

5}
X1 &1 .0 .0
X, 0 6522 .0
X3 .0 .0 9633
X4 .0 .0
Xs .0 .0 .0
X6 .0 o .0
X7 .0 o .0
X8 o .0 .0
X9 .0 o .0
Xlo .0 o .0
Xll 0 o .0

X,
.0
.0
.0

8844
.0

.0

.0

.0

XS X6 X7 x8
.0 .0 .0 .O
.0 .0 .0 .0
.0
.0 .0
8 . .
655 .0 0 0
8 .
.0 566 .0 0
G .
.0 .0 577 0
.0 .0 .0 6588
0 .0 0 .0
0 .0 0 .0
o .0 o .0

.0

.0

)
Sgg

.0

.0

.0

.0

%510,10
.0

11

.0

.0

811,11

mated parameters as shown in Table 3.2: (i) the subscripted number-
ing of the A parameters representing ASC, ESC, and MSC changed,
resulting in the revised pattern of loadings as shown in Table 3.3, and
(ii) the number of A, and ®,s was reduced from 12 to 11.

3. The default values have been used for the MO card. Thus, although
the keywords have not been listed, the LX, PH, and TD matrices are
specifed as being fixed, free, and free, respectively.

2. LISREL Output

For purposes of discussion, the entire output is presented here for Appli-
cation 1 only; subsequently, selected segments of printout material will
be presented. The discussion will focus on two major aspects of the print-
out: the LISREL summary of the specified model to be estimated and the
assessment of model fit. The printed output for Model 1 is presented in
Table 3.4.
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TABLE 3.4. LISREL Output for Model 1
LISREL VI

3y
KARL G JORESKOG AND DAG SORBOM

CONFIRMATORY FACTOR ANALYSIS INITIAL MODEL

THE FOLLOWING LISREL CONTROL LINES HAVE 3EZN READ :
DA NI=15 NO=696 MA=KM

LA

*SDAGSC® *SDOGASC®' *SDQESC® *SDJUMSC® *API3SC® ®SESGSC® *APIASC® *SCAASC?
PAPIESC® *SCAESC® *APIMSC® ?SCAMSC® °*GPA® *ENG® °"MATH®
KM 5Y
(15F4.3)
SELECTION
1 56 23 39 10 4 11 127

MO NX=11 NX=4 LX=FU PH=SY TD=S5YsFI

FR LX{2e1) LX{3s1) LX{3+2) LX(7¢3) LX(B833) LX(10s4) LX(11s4)
FR TD(1ls1l) TD(2+s2) TD(3s3) TO(4+4) TD(5,35) TD(6e6) TD(7s7)

FR TD(8.8) TD{9s9) TD(10,10) TD(11,11)

ST 140 LX{1s1) LX(4s2) LX(5623) LX(9,4)

ST »7 LX(2s1) LX{3s1) LX{5+2) LX(7s3) LX(B8s3) LX(10s4) LX(11,:4)
ST «3 PH{1s1) PH(2+2) PH{3,3) PH(4:4)

ST o2 PH(2+s1) PH{3s1) PH(3,2) PH(4s1) PH(44+2) PH(44+3)

ST 23 TD(1s1) TD(2s2) TD(3»3) TD(4e4) TD(3:5) TD(6:6) TD(7:7)
3T .3 TD(8»8) TD(9,9) TD(10,10) TO(11l.11)

QU N5 SE TY RS MI

NUMBER OF INPUT VARIABLES 15
NUMBER OF Y = VARIABLES 0
NUMBER OF X = VARIASBLES 11
NUMBER OF ETA - VARIABLES 0
NUMBER OF KSTI = VARIABLES 4
NUMBER OF OBSERVATIONS 996

QUTPUT REQUESTEZD

TECHNICAL O0OUTPUT NO
S5TANDARD ERRORS YES
T = VALUES YES
CORRELATIONS OF ESTIMATES NO
FITTED MOMENTS YES
TOTAL EFFECTS NO

VARIANCES AND COVARIANCES NO

MODIFICATION INDICES YES
FACTOR SCORES REGRESSIONS NO
FIRST ORDER DERIVATIVES NO
STANDARDIZED SOLUTION NO
PARAMETER PLOTS NO
AUTOMATIC MODIFICATION NO
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TABLE 3.4. Continued
CIRRELATION MATRIX TO SBE ANALYZED

SDQGESC__  ARIG3C__  SESGSC_ . SDIASC_ . SCAASC__
3D02G5C 1.000
AP I35C 0.63C 1.000C
32 565C 0.786 0:635 1.000
>DUASGC 0.301 0,266 0. 3056 1,000
SCAASC D.216¢ 0.2156 0,283 0.675 1.000
304C5C 0.289 0.227 0. 299 0.383 0343
APIESC O.15¢€ 0.190 0. 190 0.442 0369
STA=ZSC 0.128 0.131 0. 174 0.470 0.589
209M53C 0.,17C 0,200 0,223 0.453 0,472
AP IM5C 0,177 0.,27C 0. 257 0+475 0,489
S3CAMSC 0.135 0.188 0.187 0.424 0.577
SDQESC__  APIESC__  SCAESC__  SDOMSC__  ARIMSC__
1,000
0,705 1.000
0.543 Ne627 1.000
0,012 0.014 0069 1.0C0
0.066 NDs162 0096 0.864 1,000
0.027 2,028 02146 0,828 0.806

CORRELATION MATRIX TO B8E ANALYZED
o 2CAMBS
SCAMSC 1.0C¢C

DzZTEZERMINANT = 0,520102D0-03

PARAMETER SPECIFICATIONS

~AM3DA X
o ——-KSI_l ___&sl_2 ___KsI_ 3 ___KSIl_ &
SDWG3C C ] J 0
APIG5C 1 o} o] 0
52 555C 2 0 2 o]
3D4ALC Q o} 9 6]
S3CAAST C 3 9 2
30QE5C G 0 J 0
APIEZ5C C o] 4 0
53CAZ5C C o] 3 o]
SV aMs5C C 0 Q 0
AP IM3C o] 0 o] 8
S3TAA5C c 0 o] 7
Pl
KSl1 K3
cop 1 ---K8l_} __Ksl .2 ___KSI_J ___KSl &
51 2 S 10
K31 3 11 12 13
K>I 4 14 15 15 17
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TABLE 3.4. Continued
THETA DELTA

o 32Q635C ARLGSC__ SESGSC__.  SDIASC SCAASC
302455C 18
APIGSC 0 19
SESG5C 0 0 29
SDQASC 0 0 ) 21
3CAA5C 0 0 ) 0 22
5DQESC c 0 0 0 0
APIESC 0 0 0 0 0
SCAESC 0 0 0 0 O
30QaM5C 0 0 5] 0 0
AP IMS5C c 0 b} ) 0
5CAMSC 0 0 b} 0 0
SDQESC ARIESC__ SCAESC _ SDGMSC_ APIMSC__
23
0 24
0 0 25
0 0 0 26
0 0 0 0 27
0 0 0 0 0
THETA DELTA
- 2CAMSC
3CAM5C 23
STARTING VALUES
LAMB8DA X
---KSL_1 K31 ¢ ---Ks1_ 3 —--KSl &
5D3G5C 1,000 0.0 0.0 0.0
AP IGSC 0.700 0.0 0.0 0.0
52535C 0.700 0.0 0.0 0.0
53DAASC 0.0 1,000 0.0 0.0
SCAASC 0.0 0.700 0.0 0.0
5DQESC 0.9 0.0 1. 000 0.0
APIESC 0.0 0.0 0,700 0.0
3CAESC 0,0 0.0 0.700 0.0
3DAM5C 0.0 0.0 0.0 1.000
AP [M5C 0.0 0.0 0.0 0.700
3CAM3C 0.0 0.0 0.0 0.700
PHI
K 4
K5I 1 "‘§§§05 ---Ksi_ 2 ---KsI_ 3 ---Ks1l_ a
K31 2 0.200 0.500
K31 3 0.200 0.200 0.509
K51 4 0,200 0.200 0.202 0.50V
THETA DELTA
L $0Q9G5C APIG3C SESGSC__ SDAASC SCAASC
3D235C 2300
AP IGSC 0.0 0,300
SESGSC 0.0 0.0 0.300
3D0QA5C 0.0 0.0 0. 0.300
5CAA3C 0.0 0.0 0.0 0.0 0.300
SDGESC 0.0 0.0 0.0 0.0 0.0
APIESC 0.0 0.0 0.0 0.0 0.
3CAESC 0.0 0.0 0.0 0.0 0.0
SDQM3C 0.0 0.0 0.0 0.0 0.0
AP IMSC 0.0 0.0 0.0 0.0 0.0
3CAMSC 0.0 0.0 0.0 0.0 0
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TABLE 3.4. Continued

SRQESC . ARIESC . SCAESC ~ SDQMSC_ . ARIMSC
0.300
0.0 0.300
0.0 0.0 +300
0.0 0.0 0.0 .300
0.0 0.0 0.0 0.0 0.300
0.0 2.0 . 0.0 0

THETA DELTA

. . 3CAMSC
3CAMSC 0,300
SQUARED MULTIPLE CORRELATIONS FOR X = VARIASLES
30365¢C APLGSC SESGSC SDAAS SCAAS
22982500 *Fl§3%0s 25§25 un “‘UT%UU ‘Q‘UTSUU
SDIESC APIESC SCAESC SDAMSC APIMS
T 0.700 “15§7UU TTT0.T700 TTT0.7000 T TSUU

3QJARED MULTIPLE CORRELATIONS FOR X = VARIABLES
2CAMSC
0.700C

TOTAL COEFFICIENT JF DETERMINATION FOR X = VARIABLES
IS 0.997

CISATL ESTIMATES (MAXIMUYM LIKELIHOOD)

LAM30A X
. ~---K21_1 ~--K3L_2 —--KsI1_ 3 ---K31 4
3D 335C 1.000 O « 0 *
AP LG5C 0.819 0.0 0.0 0.0
5£535C 1.03¢C 0.0 0.0 0.0
3D04dA57C 0.0 1.000 0.0 0.0
3CAASC 0.0 1.027 0.0 0.0
59J=5C C.0 0.0 1.000 0.0
ARTESC 0.0 0.0 1.075 0.0
5CAZsC 0.0 0.0 0.973 0.0
32QM5C 0.0 0.0 0.0 1,000
AP IM5C 0.0 0.0 0.0 0.976
ST AMSC 0.0 0.0 0.0 0.944
2HI
K
511 "'6? g% ---K3l ¢ ---K21_.3 ---K21_ 4
K31 2 0.271 0,557
K531 3 0.20C 0,410 0.613
K31 4 0,209 0432 0,061 0.881
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TABLE 3.4. Continued
THETA DELTA

5DGGSC APIGSC__  SESGSC__  SDAASC__  SCAASC__
5D0G3C 0.238
APIGSC 0.0 0489
SESGSC 0,0 0,0 0.192
5DQASC 0.0 0.0 0,0 0343
SCAASC 0.0 0.0 0., 0 0.0 0,306
SDQAESC 0,0 0,0 0.0 0.0 0.0
APIESC 0.0 0.0 0. 0 0.0 0.0
SCAESC 0.0 0.0 0.0 0.0 0.0
3DAUMSC 0.0 0.0 0.0 0.0 0.0
AP IMSC 0.0 0.0 0.0 0.0 0.0
SCAMSC 0.0 0.0 0,0 0.0 0.0
SDQESC__  APIESC__  SCAESC sDaMsc APIMSC__
0.387
0.0 0292
0.0 2.0 Ce420
0.0 0.0 0.0 0,119
0,0 0.0 0.0 0.0 0162
0.0 0.0 0«0 0.0 0.0
THETA DELTA
- SCAMSC __
SCA45C 0.216¢
SAJARED MULTIPLE CORRELATIONS FOR X = VARIABLES
304 APIGS SES SDJAS AA
204g36,5  ABLRaG.,  SE3§SGhy  2DAgS6.,  2CAR3G,
SDQES £5 ca paw M
DAkSCys  ABIG3G,s  2CAR3G,,  200H3G,.  ARIRSG.,
SQUARED MULTIPLE CORRELATIONS FOR X = VARIABLES
SCAMSC
0784
TOTAL COEFFICIENT OF DETERMINATION FOR X = VARIABLES
15 0. 999
MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL
CHI-SQUARE WITH 38 DEGREES OF FREECOM IS 62757

(PROB. LEVEL = 0.0 )
GOODNESS OF FIT INDEX I5 0.892
ADJUSTED GOODNESS OF FIT INDEX IS 0.813

ROOT MEAN SQUARE RESIDUAL IS 0,048
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3TANDARD ZRRUORS

LAMBDA X
- ---Ksi_1
30Q35C 0.0
APIG5C 0.032
5ES555C 0.033
5DQA5C 0.0
5CAASC 0,0
SDQESC 0.0
APIESC 0.0
3CAESC 0.0
3D0QaM5C 0.0
AP IMSC 0.0
5CAM3C 0.0
2HI
kst 1 ——-8§3b%3
K31 2 0.026
K31 3 0.026
K31 4 0.0265
THETA DELTA
30QGS
3DQG5C “‘ST%ET
APIG5C 0.0
5£555C 0.0
5DQA3C 0.0
5CAASC 0.0
30QE5C 0.0
APIESC 0.0
53CAESC 0+0
3DUMSC 0.0
AP IMSC 0.0
53CAMSC 0.0
SRQESC__
0,024
0.0
0.0
0.0
0.0
0.0
THETA DELTA
>CAMSC 3s£%§%?3
T-VALUES
LAM3DA X
~ ---Ks51_1
53D255C 0.0
AP1G5C 25.325
525G5C 31.477
50QA5C 0.0
SCAASC 0,0
5DQESC 0.0
APIESC 0.0
3CAESC 0.0
3DAMSC 0.0
AP IMSC 0.0
5CAM5C 0.0

|
(1Y)

COOOOOQOOOOOIR

6 00 8 9 8 0w o 0K,

COO0OCOOOOOM
w
O

—--K81i_3
0.0

0.0
0.0

0.0
0.0
0.042
0.041

0.0
0.0

---K3L 2 ___KSl 3

0,031 0.0435
0.033 0.026

ARPLGSC_ . SESGSC__

N
o

0. 020
0.0
0.0
0. 0
0.0
0.0
0‘0
0.0
0.0

COOOOOOOOO
EEEEEREREEE]

CO0OOOLO0OO0

ABIESC . SCAESC

ooco0o
o9 s o
o000

i
|
|
4
=
k

[=Te Yoo
PR
QO OO

[=]
©
Q

25,555

23.650
0.0
0.0
0.0

N
CO0OOOOOCOOC OR

e e 8 v e s 00 e 0 5K

SOOVOOROOO Op~
@
&
o
.
(o]

SDJASC_

n
(%]

00000000
DR
[«NelolelooRalo]

$DaMsC_

ooco
° s 0

b

OOOOOOOOOE

0000000 O Ok

49,610
45.571
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AXRAR
Vilivi v
P et ped Py

50Q65C
AP I455C
5ES535C
3DQAS5C
SCAASC
5DQESC
APIESC
SCAZ5C
50QM5C
AP IM5C
5CAM3C

SCAM5C

FITTCD

PHI

--18333%

S
~
)
(4]
a
n

THETA DELTA

B S
0.0

[eXeXolelofololo) )
COO0OCOO0

SDQESC

THETA DELTA

2CAMOC __
17.070

ARLGSC
19.425

[sJel=loloRoYoYalo)
COOCCOOOO

ARIESC

MOMENTS AND RESIDJALS

FITTED MOMENTS

309696 _
1.000C
0.624
0.785
0.271
0,278
C.200
0.21%
0+195

-209

0:204

0197

o

SDRQESC

1.000
0,659
0.596
0.061
0,059
0.057

APIGSC _

1.000
06543
Qe222
0.228
O0.164
0.176
0.159
0.171
V167
0.162

ARIESC

QOQOr
& e © 9@
[eXoYoXe Yo
o0
WO

SESGSC

9. 367
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

SCAESC

oooo

ooow

SCAESC

1.000
0.059
0,057
0.056

---K31. %

19.410

2R3ASC

~
~

0000000 +H
EEREEEERE
CO0C0O000Y

SDAMSC_

C O
® 00

com

203ASC__

1.000
0.675
0,410
G.441
0.399
0.482
0.471
0.455

SDAMSC_

1,000
0.859
0,831

SCAASC

13.574
0.0
0.0
0.0
0‘0
0.0
0.0

ARIMSC

14.498
0‘0

SCAASC

1.000
0.421
0+453
0.410
0496
0.484
0,468
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3CAMSC

3CTAMSC

[T e A
aumouc
b Xl ]
i ViU W e
[aXalslaXalal

TiPPpa o
v

u
[¥)
[

APIESC

SCAMSC

FITTED MOMENTS

2364y

FITTED RESIDUALS

$096sC

1

[~] =1

* s 00 . o0
©oo0o (Y=Y
wWoumoOwooo|
O NOONO =0}

] () ]
CO00CO00000
. .
OV O co
oanWwo
NSO SN

)
(=]

SDIESC

-0,000
-0.008

0.044
-0.,012

0.026

ABIESC _

]
00000
"9 & 08
o0000
U~N-o
WO &0

ARIGSC__

=-0.000
-0.209

1.358
~0.368

ABIESC

0.
O.
1.
2'
l'

OLOULO
MNO~NO
[ " RN T

NORMALIZED RESIDUALS

2653

0047
~0.016

SCAESG

=0.000
0.010
0.039
0.090

SCAESC

-0.000
0.319
1.214
2.848

SDaMsc__

00O
)

ooo
Qoo
wao

0.123
=0,900

S0GMsC__

=0.,000
0.115
~0.,077

=0.000
-0.005

SCAASC

~0.000
-2.278
~2.413
5,223
-0.670
0.154
3.119

ARIMSC
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TABLE 3.4. Continued

QPLOT OF NORMALIZED RESIDUALS

30500052000 000000000000380800522008008200002000505000500000093090800000800000005S8

. X
.
B X
° *
B . X X
J XX
R . XXX
M » X X
A » X
. X% e X
X&
Jd =X
J X
A e X
N X %= X
T .
I %o
. X XX
c XX .
5 X X .
X B
X °

© % % 5 0V 6 b 880 4 Ue B e EUE UEOO O VU e SSe SOV E s oS
@ 69 0 6 5 6 b s»e B O LO GO O UO SD OO H IO DU YU OONO OO0 S

~ 3056000595505 0208525000090600000000030 0000090005080 00000903000090°90000022 99005
.

-3 3.5
NORMALIZED RESIDUALS

THE PRJISLEM REQUIRED 1475 DIUBLE PRECISION WORDS, THE CPU-TIME WAS 1.61 SECONDS

MIDIFICATION INDICES

LAM3DA X
---KS51_1 —_—— — —_— —_—
3DQe5C 0.0 %%%9% 5%%13 1§§£ 5
AP 1G5C 0.0 2.504 0. 616 7.137
52555C 0.0 2.870 0.833 3.127
532QA5C 7.567 0.0 3.019 4,608
5CAASC 7.568 0.0 3,019 4,608
5DWESC 35.45€ 12.289 0.0 3.338
APIESC 10.685 15.040 0.0 0.569
3CAZ5C 6.240 63.076 0.0 7.636
3DaM5C 0.973 25,956 25.086 0.0
AP IM53C 9.510 6.014 21.747 0.0
3CAM5C 5.121 10.652 0.578 0.0
PHI

K51 1 ---%% -1 ——-K3l_2 —--KS1_J ---KS81_ 4

K31 2 0.0 0.0

X531 3 0.0 0.0 0.0

K31 4 0.0 0.0 0.0 0.0
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THETA DELTA

E QA
SDAG3C 529%?%-_ ARLGSC_ . SESG9C_ .  3DAASC_ . SCAASC
APIGSC 3.228 0.0
SESG5C 3.57¢ 10,163 0.0
SOQA5C 16,220 0.002 5.257 0.0
SCAASC 7.077 2.533 4ab 47 0.0 0.0
5DQESC 13.057 0.812 2. 309 0.210 24.709
APIESC 6473 9.387 1.189 4.491 672802
SCAESC 7.846 0.841 0.261 2,360 199.760
5DQM5C 2.785 6.962 0.205 6.409 20.394
AP IMSC 12.626 23,325 2.883 2,206 24.775
SCAMSC 0.306 0.002 2.173 33.055 142.218
SR@ESC__  ABIESC_ . SCAESC . SDOMSC_ . APIMSC
0.0
125.156 0.0
60.026 2.044 0.0
3.117 92.220 1.468 0.0
0.076 109.267 39.396 26.184 0.0
2.472 32.724 29.814 5.016 5.454

THETA DELTA
SCAMSC
SCAMSC o g%g
MAXIMUM MODIFICATION INDEX IS

199,76 FOR ELEMENT ( 8, 5)

OF THETA DELTA

2.1. Specified LISREL Model

There are several advantages in having this information printed in the
output. First, it enables the user to check for syntax errors in the input of
the control cards and model specifications; this can be helpful in solving
problems associated with a problematic computer run. Second, it pro-
vides a double check on the starting values of both the fixed and free
parameters in the model. Finally, the numbering of estimated parameters
acts as a countercheck that the fixed and free parameters are correct. This
information also enables the user to confirm that the number of degrees of
freedom provided by the program is accurate.

The number of degrees of freedom is equal to the difference between
the number of parameters being estimated (X; the restricted correlation
matrix) and the total number of parameters in the model (S; the sample
correlation matrix). The total number of parameters in the model equals
p (p+1)/2 where p = observed variable.

With respect to the present model, there are 11 observed variables;
thus there are 66 ([11 X 12]/2) parameters in the entire model. Turning to
page 46 of the printout, we can see that there are 28 parameters to be
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estimated. This means that in fitting the restricted (i.e., hypothesized)
model (2) to the sample data (S), we should have 38 degrees of freedom.

2.2. Assessment of Model Fit

The most important issue associated with the analysis of LISREL models
is the assessment of fit between the hypothesized model and the sample
data. If the goodness-of-fit is inadequate, the next logical step is to detect
the source of misfit in the model.

Many factors are taken into account in assessing the adequacy of a
hypothesized model. Let’s now examine the major aspects of this issue.

2.2.1. Feasibility of Parameter Estimates. The first step in examining
model fit is to determine whether the parameter estimates are reasonable.
If some parameters fall outside the admissable range, this is a clear indica-
tion that either the model is wrong or the input matrix lacks sufficient
information. Examples of parameter estimates that are considered to be
unreasonable are: negative variances, correlations >1.00, and covariance
or correlation matrices that are not positive definite. Given any of these
conditions, LISREL prints a warning message. Other indicators of a bad
model are standard errors that are excessively large and parameter esti-
mates that are highly correlated.

An examination of the printout in Table 3.3 reveals all LISREL esti-
mates to be reasonable. The standard errors range from 0.010 to 0.047,
which is highly acceptable.

2.2.2. Adequacy of the Measurement Model. The second step in assess-
ing model fit is to examine the squared multiple correlation (R?) for each
observed variable and the coefficient of determination for all the observed
variables jointly. These values should range from zero to 1.00; values
close to 1.00 represent good models. Negative values are a clear indica-
tion that something is wrong with the postulated model.

The R? is an indication of the reliability of each observed measure with
respect to its underlying latent construct. In examining the observed mea-
sures of GSC, we see that SESGSC was the most reliable (R* = 0.81),
while the APIGSC was the least reliable (R* = 0.51).

The coefficient of determination is an indication of how well the ob-
served variables, in combination, serve as measuring instruments for all
the latent variables jointly; it is a generalized indicator of reliability for
the entire measurement model. Looking at the output, we see that the
coefficient of determination is remarkably high (0.999), indicating that the
measurement model is excellent.

2.2.3. Goodness-of-Fit of the Overall Model. LISREL provides four in-
dices of fit for the model as a whole: x* with its associated degrees of
freedom and probability level (ML and GLS only), the goodness-of-fit
index (GFI), the adjusted goodness-of-fit index (AGFI), and the root-
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mean-square residual (RMR). (For a review and assessment of these indi-
ces, see Marsh, Balla, & McDonald, 1988).

When the sample size is sufficiently large, x* is a likelihood ratio test
statistic that can be used to test the fit between the restricted hypothe-
sized model and the unrestricted sample data. According to this index, as
shown in Table 3.3, the overall fit for the initial model is poor (x° (38) =
627.57).

The GFI indicates the relative amount of variance and covariance
jointly explained by the model; the AGFI differs from the GFI only in the
fact that it adjusts for the number of degrees of freedom in the model.
Both indices range from zero to 1.00, with a value close to 1.00 indicating
a good fit. Although Joreskog and Sorbém (1985) argue that the GFI (and
AGFI), unlike x?, are independent of sample size and robust to departures
from multinormality, others have disputed this claim (see, e.g., Marsh,
Balla, & McDonald, 1988).

The GFI in our present application is found to be 0.892, thus represent-
ing a fairly good fit between the hypothesized model and the observed
data. However, when the degrees of freedom are taken into account, the
goodness of fit diminishes somewhat (AGFI = 0.813).

The RMR indicates the average discrepancy between the elements in
the sample and hypothesized covariance matrices; values range from zero
to 1.00. Given a good fit beteen the two models, the RMR will be small;
this value should be <0.05. The reader is cautioned, however, that wrong
models can also have RMRs <0.05. Thus, it is important not to rely too
heavily on this single piece of information in determining model fit.

2.2.4. Subjective Goodness-of-Fit Indices for Overall Model. The sensi-
tivity of the x” likelihood ratio test to sample size, as well as to the viola-
tion of various model assumptions (linearity, multinormality, additivity)
is now widely known. As an alternative to x°, other goodness-of-fit indi-
ces have been proprosed (for a review, see Marsh, Balla, & McDonald,
1988). Two of the more commonly used subjective indices are the y*/df
ratio and the Bentler and Bonett (1980) normed index (BBI).

A variety of acceptable values for the x*/df ratio have been proposed,
ranging from a low of <1.50 for a sample size of 1000 (Muthén, personal
communication, January 1987), through <3.00 (Carmines & Mclver,
1981), to <5.00 (Wheaton, Muthén, Alwin, & Summers, 1977). At this
point in our knowledge of LISREL models and the x* test statistic, it
seems clear that a x*/df ratio >2.00 represents an inadequate fit.

The x’*/df ratio for the hypothesized model in our current application is
shown to be 627.57/38 = 16.52. This value clearly represents an unac-
ceptable fit to the observed data.

The BBI ranges from zero to 1.00 and is derived from the comparison
of some specified (i.e., restricted) model, with a null model (i.e., one that
posits complete independence of all observed measurements). Thus, it
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TABLE 3.5. LISREL Input for Null Model

MO NX=11 NK=11 LX=ID PH=3YsFI TD=Zt

FR OPATLle1l) PH(2:2) PH(3:3) PH(4,4) PH(555) PH{6+6) PH(T7,7)
F PA(3+:8) PH{Y9:9) PH(10,10) PH(11,11)

51 2 PH{l1s1) PH(2,2) PH(3,3) PH(4s4) PH(5:5) PH(6+6) PH(T7»7)
ST 5 PH(3,3) PH{9s9) PH(13,10) PH{11,11)

Ud N> StE

provides a measure of complete covariation in the data; a value >0.90
indicates a psychometrically acceptable fit to the observed data.

Related to the present application, the BBI is determined by comparing
the fit of our four-factor hypothesized model with that of an 11-factor null
model. The null model, then, simply represents one in which each ob-
served variable is hypothesized as measuring one independent factor. The
LISREL specification input for the null model is presented in Table 3.5.

The computation of the BBI is (F, — F,)/F, where F, = the x° value
of the null model and F, = the x* of the restricted model. The x? likeli-
hood ratio for the null model in Application 1 was 7523.68 (55). Thus, the
BBI was computed to be: (7523.68 — 627.57)/7523.68 = 0.917, which,
although it falls within the acceptable range for goodness-of-fit, is only
marginally so, thus indicating some degree of misfit in the model.

It is important to emphasize that the x*, GFI, AGFI, RMR, x*df, and
BBI are measures of overall fit; they do not pinpoint areas of misfit in a
particular model. To determine this information, it is necessary to exam-
ine indices that relate to specific parameters in the model. We turn now
to this portion of the output.

2.2.5. Goodness-of-Fit of Individual Model Parameters. LISREL pro-
vides several indices that can assist the researcher in isolating parameters
that may be contributing to the overall misfit of a hypothesized model.
However, these indices provide a statistical approach to the problem only
and must be considered in conjunction with the substantive meaningful-
ness of the model. While the program provides many different indices,
only those pertinent to the present application will be described here.

(a) T-Values. One of the initial things to look at when searching for
misfit in a model is to examine the statistical significance of each parame-
ter. Nonsignificant parameters can be considered unimportant to the
model and can be subsequently fixed to a value of 0.0; they are thereby
deleted from the model. The statistical significance of parameters can be
determined by examining the ¢-values provided by LISREL. These values
represent the parameter estimate divided by its standard error. As such,
t-values provide evidence of whether or not a parameter is significantly
different from zero; values >2.00 are generally considered to be statisti-
cally significant.

An examination of the current output shows #-values ranging from
2.305 to 49.610. All parameters may therefore be considered statistically
significant and thus important to the hypothesized model.
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(b) Normalized Residuals.* LISREL provides information on the resid-
ual of fit for each parameter, that is, the discrepancy of fit between the
sample and hypothesized covariance matrices. These residual covari-
ances are reported in both their real metric and standardized form. The
latter are referred to in the program as normalized residuals; they are the
easier of the two to interpret since they can be considered analogous to
Z-scores. Normalized residuals represent estimates of the number of
standard deviations the observed residuals are from the zero residuals
that would exist if the model were a perfectly fitting one. Values >2.00
for any element provide a clue as to possible model misspecification; in
our output, we see 11 such values.

To assist the researcher in further evaluating model fit, LISREL pro-
vides a Q-plot, which graphs the normalized residuals. Residuals that fol-
low the dotted line rising at a 45-degree angle in the Q-plot are indicative
of a well-fitting model. Those that deviate widely from the 45-degree line
in a nonlinear fashion indicate that the model is in some way misspecified.
Boomsma (1982) has noted that such departures from normality tend to
be larger for uniquenesses than for other model parameters. Examination
of the Q-plot for our SC data shows a clear deviation from the upper
portion of the dotted line. Thus, we have further evidence to suggest that
certain parameters in the model are misspecified.

(c) Modification Indices. For each fixed parameter in a specified
model, LISREL provides a modification index (MI). This value repre-
sents the expected drop in ¥’ if a particular parameter were freely esti-
mated. As such, in a respecification and reestimation of the model, the
decrease in x* should be at least equal to the MI; it may, however, be
much larger. MIs can therefore be examined in relation to x> with one
degree of freedom. All free parameters automatically have MI values
equal to zero.

LISREL automatically prints out the fixed parameter having the largest
MI. If the researcher is unhappy with the overall fit of the hypothesized
model, he or she can respecify a model in which this parameter is set
free; the model is then reestimated. It must be emphasized, however, that
the decision of whether or not to free this parameter must make substan-
tive sense; if it does not, then consideration can be given to freeing the
fixed parameter having the next highest MI. It is important, however, to
relax only one parameter at a time.

Although the LISREL VI program provides an option for automatic
model respecification based on the MIs, this is never a wise option and
is definitely not recommended. Only the researcher is capable of judging
the balance between statistical and substantive model fit. Thus, model
respecification must remain the decision of the researcher and not of the
LISREL program.

“In the most recent version of LISREL (LISREL VII) the term “standardized
residuals” is used.
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The process of respecification and reestimation based on the examina-
tion of MIs can be repeated until an acceptable model fit is attained. How-
ever, the analyses then fall into the category of post hoc analyses and,
thus, the researcher must realize that the analyses are then exploratory,
rather than confirmatory in character; confirmatory factor analyses
ceased once the hypothesized model was rejected due to a poor fit with
the observed data. The issue of post hoc model fitting is addressed later
in the chapter.

Reviewing the output in Table 3.4, we see that the largest MI is 199.76
for TD(8,5).> This parameter represents a covariance between the ESC
and ASC subscales of the SCA. Such correlated errors can be substan-
tively meaningful in reflecting minor, possibly sample-specific data co-
variation not explained by the model (Gerbing & Anderson, 1984; Tanaka
& Huba, 1984). Frequently, this covariation results from nonrandom er-
ror introduced by a particular measurement method; one example is that
of method effects due to the item format associated with subscales of a
particular measuring instrument.

Confronted with these results, then, it was considered prudent to take
an exploratory approach in establishing a well-fitting model. For purposes
of demonstrating these post hoc analyses, we will now continue to fit our
four-factor model until we are satisfied that we have reached one that is
statistically best fitting, yet substantively meaningful; thus a series of
nested alternative models were specified and estimated.

To begin, let us again look at the MIs in Table 3.4. We see that the
largest MI for Model 1 represents an error covariance between the En-
glish and academic SC subscales of the SCA; we therefore specify a
model in which TD(8,5) is set free; we’ll call this Model 2. Since the pa-
rameter TD(8,5) represents an off-diagonal value, this means that we can
no longer specify the TD matrix to be diagonal. Theta delta must now be
specified as a symmetric matrix that is fixed (SY,FI). This means, also,
that we must specify all diagonal values (variances) to be free as well
(TD1,1-TD11,11). These specification changes are illustrated in Table
3.6.

The estimation of Model 2 yielded a x* (37) value of 427.01. The differ-
ence in fit between Models 1 and 2, expressed as Ay, is 200.56. Since
Ay’ is distributed as x* with degrees of freedom equal to the difference in
degrees of freedom between the two models, the significance of this value

’Strangely, given the same model specifications as shown in Table 3.2, the MIs
are accorded different values when the LISREL VI program is used. This is be-
cause only the diagonal elements in the TD matrix are considered (the off-diago-
nals are not taken into consideration). However, if the error-covariance matrix is
specified as TD=SY,FI, with all the diagonal elements (TD1,1-TD11,11) speci-
fied as free parameters (which represents an equivalent specification), the MIs
are identical to those estimated by the LISREL V version when the TD matrix is
specified as a diagonal matrix (TD =DI).
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TABLE 3.6. LISREL Input for Model 2
MU NXS11 NR=4 LXSFU DHESY FO=35Y.FI

FROLXU2e1) LXU3s1) LAX(Ds2) LX(793) LXUBs3) LX(10s4) LX(11s4)

FR OTD(1s1) TO(202) TO(353) TO(444) TI(S5e3) TI(666) TO(T7.7)

r= Jo(3,8) ILD(Ie9) TD(10-10) TD(11s11)

FR To(3.0)

ST 10 LX{1s1l) LXU4s2) LX(553) LX(9s8)

ST o7 LX{2s1) LX{3s1) LX(522) LX(763) LX(8s3) LX(10s4) LX(11s4)
ST 3 PH(L1sl) PH(252) PH(3s3) PH(4+4)

ST 2 PH(Z2s1) PH{351) PHI3,2) PH(as1) PH(4:2) PH(4s3)

5T 3 ID(1»1) TO(24s2) TUL3Ie3) TO(4s4) TI5:5) TD(6s0) TO(7:.7)
ST o3 10(B+3) TULYLKF) TO(1I,10) TD(11,11)

37T 21 10(3e2)
OU N3 bt TV RS M1l 55

can be tested statistically; of course, Ax? (1) = 200.56 is highly significant
and indicates a substantial improvement in model fit. Nonetheless, given
ax’> (37) = 427.01, we must conclude that there still remains a high degree
of misfit in the model.

TABLE 3.7. Summary of Respecification Steps in the Model-fitting Process

Competing models X? df AX? Adf X¥df BBI
0 Null model 7,523.68 55 — —_ — —
1 Four-factor model 627.57 38 — — 16.52 917
2 Model 1 with 3 free 427.01 37 200.56 1 11.54 .943
3 Model 1 with 8 8, 322.65 36 122.09 1 8.96 957
free

4 Model 1 with g 8,5 224.01 35 101.92 1 6.40 970
8,07 free

S Model 1 with A, free 178.62 34 45.39 1 5.25 976
g5 D115 8107 free

6 Model 1 with A, free 147.39 33 31.23 1 4.47 .980
g5 B11.5 D107 Durs
free

7 Model 1 with A, free 131.19 32 16.20 1 4.10 .983
Bgs D115 D107 Ons
B0, free

8 Model 1 with A, free 118.55 31 12.64 1 3.82 .984
Bgs 8115 8107 Dius
102 By free

9 Model 1 with Ag; Mg, 93.24 30 25.31 1 3.11 .988

free 8gs 815 3107
B118 By02 By free
10 Model 1 with Ag; A, 80.76 29 12.48 1 2.78 .989
free
g5 B11,5 D107 Burs
B10.2 841 8, free
11 Model 1 with Ag; Ag, 67.44 28 13.32 1 2.41 991
A\, free
Bgs D115 8107 Burs
8102 B4y 3, free
12 Model 1 with Ag; Ag, 59.19 27 8.25 1 2.19 991
A2 Ag; free
Bgs 8115 0107 Burs
3102 84y O, free
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TABLE 3.8. LISREL Input for Final Model

NX=11 NK=4 LX=FU PH=SY TD=SY,FI
LX(2s1) LX{3s1) LX{5+2) LX(723) LX(8,3) LX(10,4) LX(11:4)

LX(6s1) LX(8s2) LX(1s2) LX(9s3)

TO(1ls1) TD(2,2) TD(3,3) TD(4+4) TD(5:s5) TD(6:,6) TO(7,7)
TO(8+8) TO(9,9) TD(10,10) TD(11,11)

TO(8s5) TD{11:,5) TD(10s7) TD(11+8) TD(10:2) TO(4s1) TOD(7,2)
10 LX(151) LX(462) LX(6»3) LX(9+4)

o7 LX(2s1) LX(351) LX(5+2) LX(7+3) LX(8,3) LX{10s4) LX(11s6)
#2 LX(5s1) LX{8,2) LX{1+s2) LX(9,3)

+5 PH(1,1) PH(24:2) PH{(3+3) PH(4:4)

+2 PH{2s1) PH(3s1) PH(3s2) PH(4s1) PH(4,2) PH(4»3)

+3 TO(1,1) TD(2,2) TD(3+3) TD{(4,4) TD(5,5) TD(6s6) TD(7:7)
«3 TD(8+3) TD(9,9) TD(10,10) TD(11,11)

ol TD(S'SA TD(11,5) TO(10,7) TD(11:8) TD(10,2) TD(4.1) TD(7,2)
N3 SE TV RS MI

In like fashion, building each time on the assessment of individual esti-
mated parameter fit for each previously specified model, a series of mod-
els was subsequently specified and estimated until one was obtained that
both exhibited an acceptable statistical fit and indicated a substantively
meaningful representation of the observed data. In total, 11 post hoc mod-
els were eventually hypothesized before an acceptable fit was obtained.
Steps in the model-fitting process in reaching this final model are summa-
rized in Table 3.7.

The x* overall fit of this final model was 59.19 with 27 degrees of free-
dom (x*/df = 2.19; BBI = .991); the input for this final model is shown
in Table 3.8, and selected output is presented in Table 3.9; included are
the LISREL estimates, goodness-of-fit for the whole model, standard er-
rors, Q-plot, and the MIs. A schematic representation of the final model
is shown in Figure 3.2.

TABLE 3.9. Selected LISREL Output for Final Model
LISREL ESTIMATES (MAXIMUY LIKELIHOOD)

LAMBCA X
o ---83L_1 ___XSl 2 —--Kol_ 3 ---K3L %
530QG5C 1.000 =0.116 0.0 0.0
AP IGSC 0.757 0.0 0.0 0.0
SESGSC 0.955 0.0 0.0 0.0
S5DQASC 0.0 1.000 0.0 0.0
SCAASC 0.0 0,971 0.0 0.0
3DQESC 0.194 0.0 1. 009 0.0
APIESC 0.0 0.0 1.213 0.0
SCAESC 0.0 0.218 0.854 0.0
S5DaMsC 0.0 0.9 -~0.062 1.000
APIMSC 0.0 0.0 0.0 0,963
SCAMSC 0.0 0.0 0.0 0.926
PHI
---K2l_1 ---K3l_¢ _— - _— -
KST 1 0.862 £21-3 K3l-4
K5I 2 0,322 0.699
K51 3 0,151 D334 0.541
KST 4 0.244 D498 0.0 23 0,838
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TABLE 3.9. Continued

5DQAGSC
AP IGSC
SESGSC
SDQASC
SCAASC
SDQESC
APIESC
SCAESC
3DQMSC
APIMSC
5CAMSC

SCAMSC

THETA DELTA

§QQ§§%63 ARIG3C SESG3C . 2DQASC SCAASC__
0.0 0.496
0.0 0.0 0.214
0.060 0.0 0.0 0.301
0.0 0.0 0.0 0.0 0.355
0.0 0.0 0.0 0.0 0.0
0.0 0.049 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.190
0.0 0.0 0.0 0.0 0.0
0.0 0.052 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.132
SDOESC ABJESC__ SCAESC_ SDGMSC_ ARPIMSC
0.368
0.0 0.198
0.0 0.0 471
0.0 0.0 . 0.113
0.0 0.084 0.0 0.0 0.155
0.0 0.0 .067 0. 0.0
THETA DELTA
SCAMSC__
0.231
SJUARED MULTIPLE CIRRELATIONS FOR X - VARIABLES
S0agSC . ARIGHC . SESGSC_  SDAASC  SCAASC
02797 3.503 735 0.533 0835
SRAESC. _ ABIESC _ AESQ.. 20QMSC_ APIMSC__
0.633 6.8032 62533 0.887 0.845

SQUARED MULTIPLE CORRELATIONS FCR X = VARIABLES

A
scagsts

TOTAL COEFFICIENT OF DETERMINATION FOR X = VARIABLES IS

MEASURES OF GOJDNESS OF FIT FOR THE WHOLE MODEL

CHI=-SQUARE WITH 27 DEGREES OF FREEDOM IS 59,19
(PROB. LEVEL = 0.000)

GOODNESS OF FIT INDEX IS 0.989

ADJUSTED GOODNESS OF FIT INDEX IS5 0.974

ROOT MEZAN SQUARE RESIDUAL IS 0.021
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TABLE 3.9. Continued

STANDARD ERRCRS

LAM30A X
~--K2l_1 ~--831_2 ---Ksl 3 ___KSI. &
504QGSC 0.0 0,033 0.0 O.
APIGSC 0.032 0.0 0. 0 0.0
S5ESGSC 0.034 0.0 0.0 0.0
3DQASC 0.0 0.0 0.0 0.0
SCAASC 0. 0.038 0. 0.0
S50QE5SC 0,026 0.0 0.0 0.0
APIESC 0.0 0.0 0. 050 0.0
SCAESC 0.0 0.039 0.045 0.0
SDaMsC 0.0 0.0 0.022 0.0
AP IMSC 0.0 0.0 0.0 0.018
3CAMSC 0.0 0.0 0.0 0,020
PHI
K3 3 —_ K3
e e B
K51 2 0,038 0.047
K3l 3 0.027 0.028 0.042
KSI 4 0,033 0,034 0,025 0.045
THETA DELTA
. SLd63C ARLGSC SESGSC__ 209ASC
304QG65C 0.022
AP IG5C 0.0 0.025
S5E£5435C 0.0 0.0 0,020
SDQASC 0.014 0.9 0.0 0.024
SCAASC 0.0 0.0 0.0 0.0
50QE5C 0.0 0.0 0.0 0.0
AP IESC 0.0 0.015 0.0 0.0
SCAESC 0.0 0.0 0.0 0.0
SDAMSC 0.0 0.0 0.0 0.0
AP IM5C 0.0 0.011 0.0 0.0
S3CAMSC 0.0 0.0 0.0 0.0
20QE5C ABIESC _ SCAESC _ SRGMSC_
0,023
0.0 0.024
0.0 0.0 0.025
0.0 0.0 0.0 0.010
0.0 0.010 0.0 0.0
0.0 0.0 0.013 °
THETA DELTA
2CAMSC
SCAMSC 0.013

SCAASC

0.011
0.0
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TABLE 3.9. Continued

QAPLOT OF NORMALIZED RESIDUALS
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-3.5 3.5
NORMALIZED RESIDUALS

THE PRQBLEM REQUIRED 1915 DOUSBLE PRECISION WORDSs, THE CPU=-TIME WAS 1.86 SECONDS

MIDIFICATION INDICES

LAMBDA X
. ---KS1_1 —--K3L_.2 ——-K31_J ——-KS1_ 4
50065C 0.0 0.0 0.724 1.648
APIGSC 0.0 0.006 0.469 1.568
S5E2565C 0.0 0.108 0.127 0.278
SD JASC 0,009 0.0 6. 525 6.976
3CAASC 0,020 0.9 5.672 9.374
SDWESC 0.0 3,138 0.0 1.915
AP IESC 0.788 2,918 0.0 9.817
SCAESC 0.837 0.9 0.0 16.708
SOaMsC 0.016 0.891 0.0 0.0
APIMSC 3.490 5.418 l.412 0.0
SCAMSC J.928 3.636 1.412 0.0
PHI
3 2
ks1 1 _-_%.?é_.l ---K3al_ 2 ——-K81_ 3 ---K31. 4
K5I 2 0.0 0.9
K31 3 C.0 0.0 0.0
K5I 4 0.0 0.0 0.0 0.0
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TABLE 3.9. Continued
THETA DELTA

SLAGsC__  APIGSC__ SESGSC._ . SDQASC . SCAASC
50QG5C 0.0
APIGSC 0.153 0.0
SESG5C 0.630 1.188 0.0
SDQASC 0.0 2.373 0.81) 0.0
SCAASC 1.080 5.631 0. 380 8.793 0.0
SDQESC 2.548 1.300 0,253 2.777 0.635
APIESC 0.181 0.0 0. 322 0.152 2.547
SCAESC 3.051 1.134 0.683 15.893 0.0
SDUM3C 2.725 1.239 0.823 0.010 0.340
AP IMSC 4,703 0.9 8. 764 0.037 2.683
SCAMSC 0.065 42617 4,097 1.386 0.0
$DQESC . ARIESC . SCAESC = SDGMSC_ . ARIMSC
0.0
15,009 0.0
2.819 0.606 0.0
1.166 3.590 0.045 0.0
1.326 0.0 40502 3.402 0.0
0.025 0.082 0.0 5.3364 0.881
THETA DELTA
SCAMSC
5CAMSC 0.0

MAXIMUM MODIFICATION INDEX IS5 16.71 FOR ELEMENT ( 8s 4)
OF LAMBDA X

STANDARDI ZED SOLUTION

LAMB3DA X
o _--KSI_1 ___ K3l 2 ___KS81 3 ___KSl &
SDUGHC 0a928 =0.097 0.C 0.0
AP IGSC 0,703 0.0 0.0 0.0
SESGSC 0.886 D0 0.0 0.0
SDWASC 0.0 Ue836 0.0 0.0
SCAASC 0.0 0.812 0.0 0.0
SDUESC 0.18¢C 0.9 Ne 735 0.0
AP 1ES5C 0.0 0.0 0. 892 0.0
SCAESC 0.0 D182 0. 623 0.0
SDAM5C 0.0 0.0 -0 045 0,942
AP IM>C 00 0,90 0.0 0.9038
S5CAMSC 0.0 GeV 0.0 0.872
PH1
csp 1 ---%8b.l __KsL 2 __<SL.3  ___Ksl.d
Kaf 2 Debd 1% 1,000
Ksl 3 0.222 0542 1. 000
KSI 4 0.279 0.632 0,035 1.000

THE PRUBLEM REQUIRED 1915 DOUBLE PRICISION WORDS,
THE CPU-TIME WAS 1.82 SECONDS
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FIGURE 3.2. Structure of Final Four-Factor Model of Self-Concept.
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3. The Issue of Post Hoc Model Fitting

The pros and cons of post hoc model fitting are well debated in the litera-
ture. While some have severely criticized the practice (e.g., CIiff, 1983;
Cudeck & Browne, 1983), others have argued that as long as the re-
searcher is fully cognizant of the exploratory nature of his or her analy-
ses, the process can be substantively meaningful (e.g., Byrne, Shavelson,
& Muthén, 1989; Tanaka & Huba, 1984); practical, as well as statistical
significance can be taken into account.

Undoubtedly, post hoc model fitting with confirmatory covariance
structure models is problematic. With multiple model specifications,
there is the risk of capitalizing on chance factors, and thus, the increased
probability of making Type I or Type II errors. Furthermore, at this point
in time, there is no direct way to adjust for the probability of such error.
This represents a serious limitation in the analysis of covariance struc-
tures since, realistically, most psychological research is likely to require
the specification of alternative models in order to attain one that fits well
(see, e.g., Anderson & Gerbing, 1988; MacCallum, 1986). One approach
to the problem, however, is to employ a cross-validation strategy; none-
theless, this process too requires judicial implementation (for a review of
advantages and disadvantages, see Byrne et al., 1989).

Until such time that statisticians resolve the problem of experiment-
wise error associated with post hoc model fitting, researchers are encour-
aged to gather maximal information regarding individual model parame-
ters albeit bearing in mind that, as with other statistical procedures, such
information comes at a price—the risk of capitalization on chance factors.
(Technical details regarding tests for the sensitivity of post hoc model
parameters is provided in Chapter 4.) Indeed, I cannot emphasize too
strongly, the importance of exercising sound judgement in the implemen-
tation of these procedures; constrained parameters should not be relaxed
unless it makes sense substantively to do so. Only a solid theoretical and
substantive knowledge of one’s subject area can guide this investigative
process. Cross-validation procedures can then be used to test for the va-
lidity of these results.

Hypothesis 2: Self-Concept Is a Two-Factor Structure

The model to be tested in this hypothesis postulates a priori that SC is a
two-factor structure consisting of GSC and ASC. As such, all three GSC
measures load onto the GSC factor, while all other measures load onto
the ASC factor. This model argues against the viability of subject-specific
SC academic factors. This model is schematically represented in Figure
3.3.
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FIGURE 3.3. Hypothesized Structure of Two-Factor Model of Self-Concept.

As with our four-factor model, we will again examine the pattern of
specified factor loadings, variance-covariances, and error variances. For
purposes of comparison, relevant cross-loadings and all error covariances
specified in the four-factor model were similarly specified in the two-fac-
tor model. This specification is presented in Table 3.10 and the accompa-
nying LISREL input is shown in Table 3.11.
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TABLE 3.10. Pattern of Estimated Parameters for Hypothesized Two-Factor
Model

Factor Loading Matrix (Ay)?

GSC ASC

SC measure X (El) (€5)
SDQGSC 1 1.00 .0
APIGSC 2 A21 .0
SESGSC 3 A 31 .0
SDQASC 4 .0 1.00
SCAASC 5 .0 p\ 52
SDQESC 6 A 61 )‘62
APIESC 7 .0 A 72
SCAESC 8 .0 A 82
SDQMSC 9 .0 A 92
APIMSC 10 0 2 10,2
SCAMSC 11 .0 ‘12
Factor Variance-Covariance Matrix ()

GSC ASC

( ¢11) ( ¢22)
GSC ¢11
ASC %1 %5

2Secondary factor loadings and error covariances consistent with final four-factor model.

An examination of the overall fit of this model indicates that it is clearly
not a good fit to the data. Selected portions of the LISREL output show-
ing the estimates, overall model fit, standard errors, Q-plot of normalized
residuals, and MIs are presented in Table 3.12.
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TABLE 3.10. Continued

Error Variance-Covariance Matrix (86)

X1 X2 X X X X X X X X X

3 4 5 %6 7 8 9 10 11
%11
0 86,5
0 0 %
&1 © o %,
0 0 0 o 9555
0 0 o 0 o0 6‘555
0 8, 0 0 0 0 9677
0 0 0 o0 86 0 O 9588
0 0 o o0 o0 0o o 0 %5
0 %5, 0 0 O 0 6610,7 ° o %419
0 0 0o o 9511’50 0 9511,80 0 6511,11

TABLE 3.11. LISREL Input for Two-Factor Model

NX=11 NK=2 LX=FU PH=SY TD=SY,FI1
LX(2s1) LX(3s1) LX(552) LX(6s2) LX(T752) LX(8s2) LX(9s2) LX(10s2)

LX({11,2)

LX(6s1) LX{(8,2) LX(1,2)

TD(1lel) TD(2,2) TD(3s3) TD(4s4) TD(555) TD(6s6) TD(7:7)
TO(3+8) TO(9+s9) TD(10,10) TD(11,11)

TD(3,5) TD(11,5) TD(10,7) TD(11+8) TO(10.2) TD(4sl) TO(7,2)
1.0 LX(1s1) LX(4,42) ]

o7 LX{25s1) LXI3s1) LX(5:2) LX(6s2) LX({752) LX(8,2) LX(9+2)
o7 LX(10+2) LX(11+2)

o2 LX(6s1) LX(Bs2) LX(1+2)

+5 PH({1s1) PH(2+2)

02 PH(2+1)

23 TD(1s1) TD(2+2) TD(3+3) TD(4s4) TD(5:5) TD(6:6) TD(7s7)
»3 TD(8+3) TD(9+9) TD(10+s10) ID(11»11)

o1 TD(8s5) TD(11+5) TO(10,7) TD(11s8) TD(10,2) TD(4sl) TD(7s2)
NS SE TV RS MI
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TABLE 3.12. Selected LISREL Output for Two-Factor Model
LISREL ESTIMATES (MAXIMUM LIKELIHOOD)

LAMBCA X
---K381_1 ---Ksl_2
SDQAGSC 1.000 =0.159
APIGSC 0,787 0.0
3E5GSC 0.995 0.0
30QAS5C 0.0 1.000
SCAA5C 0.0 1.0856
SDQAESC 0:376 ~0.166
APIESC 0.0 0.064
SCAESC 0.0 0.160
5DQMSC 0.0 1.974
APIM3C 0.0 1.923
S5CAMSC 0.0 1.838
PHI
—— -—--K31_
KST 1 5%*53 il-2
KSI 2 0.122 0.228
THETA DELTA
. 3BQ§§£_- ARIGSC__ 2ES63C SDQASC __ SCAASC
3DQGSC «215
AP1GSC 0.0 0.491
SESGSC 0.0 0.0 0.210
SOQA5C 0.045 0.0 0.0 0,772
SCAA5C 0.0 040 0.0 0.0 0.732
JDQESC 0.0 0.0 0.0 0.0 0.0
APIESC 0.0 0.057 0.0 0.0 0.0
SCAESC 0.0 0.0 0.0 0.0 0.550
SDAM5C 0.0 0.0 0.0 0.0 0.0
AP IMSC 0.0 0.053 0.0 0.0 0.0
SCAMSC 0.0 0.0 0.0 0.0 0.123
S0QESC__ APIESC _ SCALSC SDAMSC_ ARIMSC
0.896
0.0 0.999
0.0 0.0 0.994
0.0 0.0 0.0 0,113
0.0 0.112 0.0 0.0 0.154
0.0 0.0 0.079 0. 0.0

THETA DELTA
SCAM5C §£55§§3T
SAJARED MULTIPLE CORRELATIONS FOR X = VARIABLES
3098365,  ABLR3G,s  3EIEGNy  3DOA3G,,  3CARG,
SRAESE.,  ABIESLS, ARG SRANEG.,  ARIMSC
SQUARED MULTIPLE CORRELATIONS FOR X = VARIABLES
3CARG 3

TOTAL COEFFICIENT OF DETERMINATION FOR X = VARIABLES
Is 0.960
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TABLE 3.12. Continued
MEASURES OF GOUODNESS OF FIT FOR THE WHOLE MODEL 3

CHI-SQUARE WITH 34 DEGREES OF FREEDOM IS 1895.11
(PROB. LEVEL = 0.0 )

GOODNESS OF FIT INDEX I35 0.723

ADJUSTED GOODNESS OF FIT INDEX IS 04463

ROOT MEAN SQUARE RESIDUAL IS 0.190
3TANDARD ERRCRS
_LAM3DA X
. = _--KS51_ 1 _--KSL 2
$0265C 0.0 03037
APLG53C 0.032 0.0
SESGSC 0.033 0.0
303A5C 0.0 0.0
SCAASC 0.0 0.088
SDQESC 0.038 0.069
APIESC 0.0 0.069
SCAESC 0.0 0.069
3DaMsC 0.0 0.121
AP IMSC 0.0 0.119
SCAMSC 0.0 0.115
PHI
ks1 1 ---952bsy K812
K31 2 0.018 0.029
THETA DELTA
3R88sS_ APIGSC SESGSC__ 2DAASC SCAASC
30QGSC 02021
AP 1GSC 0.0 0.025
SESG3C 0.0 0.0 0.021
3DQASC 0.017 0.0 0.0 0.035
SCAASC 0.0 0.0 0.0 0.0 0.034
SDQESC 0.0 0.0 0.0 0.0 0.0
AP IESC 0.0 0.024 0.0 0.0 0.0
S5CAESC 0.0 0.0 0.0 0.0 0.033
30aM3C 0.0 0.0 0.0 0.0 0.0
APIM5C 0.0 0.011 0.0 0.0 0.0
SCAM3C 0.0 0.0 0.0 0.0 0.016
SDESC__  APIESC__  SCAESC__  SDQMSC__  ARIMSC__
0.041
0.0 0.045
0.0 0.0 0.045
0.0 0.0 0.0 0.010
0.0 0.016 0.0 0.0 0.011
0.0 0.0 0.017 0.0 0.
THETA DELTA
5CAMSC R P b
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TABLE 3.12. Continued

QPLOT OF NORMALIZED RESIDUALS

30350 0ss 0350890805 300e002000000080000800002000000000000009033569090000000030008025950

. s e
. . »
. . N
. . N
. . »
. . .
. . X
. N .
. . X
. . X
. » X
. . X
N . . &
J . . %
R . . X
™ . . X
A . . X
L . » x
. . X % X B
V] . . X XX -
u . . X .
A . . * .
N . . X -
T . . X% .
1 . . X N
L . . X »
£ . » * .
E . . x -
. . X .
. . X .
. . X .
. . x o
. » 4 .
. . .
. . .
. . .

“36500000090990005950000009089000580500005020000000000000200900250200002000000 0
-3.5 3.5
NORMAL IZED RESIDUALS

THE PROBLEM REQUIRED 1501 DOUSLE PRECISION WORDS» THE CPU-TIME WAS 1.63 SECONDS

MODIFICAT ION INDICES

LAM3DA X
___KSL_ —__Ksl

sDaGsC §35-4 -535-2

AP1GSC 0.0 1.150

3ESG5C 0.0 1.150
SDQAASC 63.212 0.0
3CAASC 15.102 0.0
SDQESC 0.0 0.0
APIESC 37.264 0.0
SCAESC 2.686 0.0
5DWMSC 0.416 0.0
AP IMSC 0.024 0.0
SCAM5C 14,334 0.0

PHI
R —---Ksl_ 1 ---K31_2
K3l 1 0.0

K31 2 0.0 0.0
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THETA DELTA

30Q9GSC__  ARIS3C__  SESGSC__  SDAASC SCAASC__
530465C 0,0
AP 1G5C 1.782 0,9
52 5G5C 0,098 1.479 0.0
S50QASC 0+0 0.112 5. 890 0,0
S>CAASC 0,226 0.199 9.022 129,836 0.0
S5DUWESC 1.479 1.437 4,159 150.549 1.3
APIESC 7.202 0.0 2.259 241,917 1.8
SCAESC 4.659 0.008 0. 200 28.509 0.9
530QM5C 2611 0.606 2.370 0.153 11.3
AP IM>C 2.758 0.0 6.123 1.766 0.2
SCAMSC 0.074 2.192 10.336 30.949 0.0
SOQESC__  APIESC__  SCAESC . SDGMSC__  APIMSC_
0.0
473.929 0.0
148,642 231.085 0.0

0,110 7.072 3.089 0s0

8.343 0.0 11.632 0,000 0.0

3.181 18.510 Qe 8.623 1.01

THETA DELTA
SCAMSC

SCAMSC 0.0

MAXIMUM MODIFICATION INDEX IS 473,93 FOR ELEMENT ( 7.
OF THETA DELTA

Hypothesis 3: Self-Concept Is a One-Factor Structure

A review of the SC literature reveals that there are many who still argue
for the unidimensionality of the construct. Thus, it was considered impor-
tant to test the fit of a one-factor model of SC. This model is presented
schematically in Figure 3.4, the specification of parameters summarized
in Table 3.13, and the LISREL input presented in Table 3.14.

Finally, the selected LISREL output, as with the two-factor model, is
presented in Table 3.15.

Examination of goodness-of-fit indices for both the hypothesized two-
factor and one-factor models of SC reveals a clear indication of misspeci-
fied models. Based on these findings, we concluded that SC is a multidi-
mensional construct, which in this study comprised the four facets of
GSC, ASC, ESC, and MSC.
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8,— SDQGSC

)\11
8,——! APIGSC

)‘21
83— SESGSC

)‘31
8, —— SDQASC

)\41

85— SCAASC As

GSC
)\61 E
58— SDQESC !
)\71
8;— APIESC N
81
g SCAESC Ner

89— SDAMSC Ao, 1

610———»‘ APIMSC

81— SCAMSC

FIGURE 3.4. Hypothesized Structure of One-Factor Model of Self-Concept.
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TABLE 3.13. Pattern of Estimated Parameters for Hypothesized One-Factor
Model

Factor Loading Matrix (Ay)?

GSC
SC measure X (& 1)
SDQGSC X, 1.00
APIASC X, 21
SESGSC X, Aa1
SDQASC X 4 A 41
SCAASC Xg A51
SDQESC X, A 61
APIESC X, >.71
SCAESC Xg A 81
SDQMSC Xy X91
APIMSC X0 A 10,1
SCAMSC X1, A 11

Factor Variance-Covariance Matrix (&)
GSC
(417)

GSC ¢11

*Secondary factor loadings and error covariances consistent with final four-factor model.
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TABLE 3.13. Continued
Error Variance-Covariance Matrix (6;)

5% 5300% X5 X X X5 X5 %10 X1
%11

0 ¥,

o 0 %,

&1 O o %,

0 0 o o 9555

0 0 o 0 © 9566

0 85, 0 0 © 0 9577

0 0 o o0 8ggs O 0 9588

o o o o o o o 0 55

0 8,5, 0 0 O 0 6610,7 ° ° 80,10
o o0 o o P&, 50 o0 %1,80 O %611,11

TABLE 3.14. LISREL Input for One-Factor Model

NX=11 NK=1 LX=FU PH=SY TO=SY,FI

L
L

2o 8 v O 0 0 O Meefuf i

V=WWUINNN® OO0 X

X(201) LX{(3s1) LX(4s1) LX(5s1) LX(6s1) LX{7s1) LX(Bsl) LX(9s1)
X(lOol) LX{(11,1)

2.2) TD(3+3) TD(4.4) TD(S-S) TD(666) TD(7:7)
9) TD(10,10) TD(11,11)
»5) TD(10,7) TD(lloS) TO(10+2) TD(4s1) TD(7,2)

})ILX(QnI) LX({5s1) LX(651) LX(761) LX(8s1) LX(9s1)
?

X{
(
( 9
{ 115
0

LX( 3,
LX(1

;5-5) TD(6:6) TD(7-7)
TD(10:2) TO(4s1) TD(7:2)

P s P g o~ o I () QD e e

Q0D e b= G0t ) P s e
Ko ® o 00 O

Vet VT QOO
MOOUIXXX[ee v

(454) T
TD(11s1
TD(11,8

S w]
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TABLE 3.15. Selected LISREL Output for One-Factor Model
LISREL ESTIMATES (MAXIMUM LIKEL IHOOD)

LAM3DA X

-—-Ksl_ 1
$DAGSC 1.000
APIG3C 1.273
SES5G5C 1.346
5DQA5C 2.571
5CAASC 2.785
SDQESC 0.127
APIESC 0.208
SCAESC 0,433
SDAMSC 5.031
AP IMSC 4.916
SCAMSC 4.692

PHI

kst 1 —-8bad

THETA DELTA

o $00GSC__  APLGSC . SESGSC__  SDOASC_~ SCAASC
S3DIG5C 0.965
AP IGS5C 0.0 0,343
SESGS5C 0.0 0.0 0.937
5DAASC 0.211 0.0 0. 0 0.769
5CAASC 0.0 0.0 0. 0 0.0 0.729
S5DQESC 0.0 0,0 0.0 0.0 0.0
APIESC 0.0 0,181 0. 0 0.0 0.0
5CAESC 0.0 0.0 0.0 0.0 0.547
3DQM5C 0.0 0.0 0.0 0.0 0.0
AP IM5C 0.0 0.051 0.0 0.0 0.0
SCAMSC 0.0 0.0 0.0 0.0 »120
SDQESC ARPIESC SCAESC SDQMSC__ APIMSC _
0,999
0.0 0.998
0.0 0.0 0.993
0.0 0.0 0.0 0.114
0.0 0.106 C.0 0.0 0,153
0.0 0.0 0075 0.0 0.0
THETA DELTA
SCAMSC ;§55§§35
S5AUARED MULTIPLE CORRELATIONS FOR X = VARIA3BLES
20Q63¢C__ ARPIGSC_ _ SESGSC_ SDAASC SCAASC __
0.035 0.057 0.063 0.231 0.271
SDQESC..  ARIESC..  SCAESC..  SDQMSC_.  ARIMSC
0.001 0,002 2007 0.886 0.847
SQAQUARED MULTIPLE CORRELATIONS FOR X = YARIABLES
3 SA!§§--
0.770
TOTAL COEFFICIENT OF DETERMINATION-FOR X = VARIABLES
IS - Oe 635
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TABLE 3.15. Continued

CHI-SQUARE WITH

MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL :

(PRO8. LEVEL = 0.0

37 DEGREES OF FREEDOM IS

)

3392.96

GOODNESS OF FIT INDEX IS 0.605

ADJUSTED GOODNESS OF FIT INDEX IS 0.295

ROOT MEAN SQUARE RESIDUAL 1S

STANDARD ERRORS

SDAGSC
APIG5C
SESGSC
S0QASC
SCAASC
SDQESC
APIESC
SCAESC
SOAMsC
AP IM3C
SCAMSC

S0Q6eSC
AP IGSC
SES5G5C
3DIA5C
SCAASC
SDQESC
APIESC
SCALCSC
5D0QM3C
APIMS5C
53CAMSC

SCAMSC

LAMBDA X

---KS1_1
0.0

0.277
0.28¢
0.429
0.500
2176
0.180
0.190
0.864%
0.845
»808

o

o

PHI
R HLde.

THETA DELTA
304gs
0.

&3
0'0

SRQESC

0.045
0.0
0.0
0.0
0.0
0.0

THETA DELTA

2453813

APIGSC . SE36SC__
0.043
0.0 0. 042
0.0 0.0
0.0 0.9
0.0 0.0
0.031 0. 0
0.0 0.
0,0 0.0
0.015 0.0
0.0 0.0

APIESC_ .  SCAEsSC _
0,045
0.0 0.045
0.0 0.0
0.015 0.0
0.0 €C.017

0.238

SDQASC__ SCAASC__
0.035
0.0 0.034
0.0 0.0
0.0 0.0
0.0 0.032
0.0 0.0
0.0 0.0
0.0 0.015

SDGMSC__ APIMSC
0.010
0.0 0,011
0.0 0.0
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QPLOT OF NORMALIZED RESIDUALS

30500005552 0000820390902030°030088 5050000200008 00800000800005200800000P0000808 985

UM ~-2»co F»I002
© 9 © 5 5 90 e b 500 o Se v OO0 B ED U S OeUOODOEOEE Uy

0000000080 o0 e 0000 e NMXNIENIIINRXKe Xoe eo00 0 000

~30500089 0300000000000 000000000085000000006000080000800000900000000309 6003886

=3.5

THE PRO3LIM REQUIRED

MODIFICATION INDICES

5D0Q65C
APIGSC
SESG5C
SDQA5C
35CAASC
3DQESC
APIESC
SCAE5C
SDAMSC
APIM5C
SCAMSC

LAMBDA X

PHIL

---K8L_1
.0

[efeYoYoleloRoToY oo ol
EEEEEREEEKEK
OO0 00O0O0OO

i

NORMAL 12ED RESIDUALS

1336 DOUBLE PRECISION WORDS» THE CPU=TIME WAS

3.5

1.54 SECONDS
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THETA DELTA

N 5&9%&%__ ARLGSC . SESGSC_ . 2DQASC . SCAASC
SDAGSC .
APIGSC 353.681 0.0
SES6SC 556.88¢9 346,212 0.0
SDGQASC 0.0 3.168 0.816 0.0
SCAASC 0.644 3.334 18.554 117.572 0.0
S0QESC 36,034 11.183 91.613 138,263 5.045
APIESC 3.152 0.0 6.573 215,612 0.959
SCAESC 0.158 0.706 2.3256 25,887 0.0
SDAM5C 0.664 11.868 2,437 0.067 11.537
APIM5C 8+079 0.0 1.844 1.147 0.764
SCAMSC 5,758 4.725 20,569 24,185 0.0
SRQESC__  ABIESC_ . SCAESC . 3DOMSC_ . APIMSC
0.0
463.719 0.0
1444304 230.598 0.0
1.686 9:491 1.683 0.0
12.300 0.0 11.375 2,861 0.0
9.459 16.332 C.0 10.037 3,240

THETA DELTA
5;5%%%-_

MAXIMUM MODIFICATION INDEX IS 556.89 FOR ELEMENT ( 3, 1)
OF THETA DELTA

Summary

This chapter presented an application of LISREL CFA in testing for the
factorial structure of a theoretical construct. Specifically, a four-factor
model of SC was tested against competing two- and one-factor models.
For each model, the LISREL input was presented, together with related
tabular and schematic illustrations of relations among the variables. A
thorough review of the LISREL output provided a guide to the interpreta-
tion of model fit with respect to the model as a whole, and for individual
model parameters. Finally, problems associated with post hoc model fit-
ting were addressed, and caveats issued regarding the importance of se-
lecting substantively meaningful final models.
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Application 2: Validating a Measuring
Instrument

Our second application tests hypotheses related to the Self Description
Questionnaire III (SDQIII; Marsh & O’Neill, 1984), an instrument de-
signed to measure 13 facets of SC: one general SC, three academic SCs
(English, mathematics, and general school), and nine nonacademic SCs
(physical ability, physical appearance, social (same sex), social (opposite
sex), parent relations, emotional stability, problem solving/creative think-
ing, religion/spirituality, and honesty/reliability). Of relevance to the pres-
ent application is the factorial validity of the general and academic SC
subscales for males only; tests of hypotheses related to factorial invari-
ance will be addressed in Section III. (For details of the study related to
this application, see Byrne, 1988b.)

1. The SDQIII: The Measuring Instrument Under Study

The SDQIII is composed of 136 items that are structured on an eight-
point likert-type scale with responses ranging from ‘‘1—Definitely False”’
to ‘‘8—Definitely True.’” The General-self subscale contains 12 items and
was used to measure general SC. The Academic SC, Verbal SC, and
Mathematics SC subscales each contain 10 items and were used to mea-
sure general school, English, and mathematics SCs, respectively.

In testing for the factorial validity of a measuring instrument using CFA
procedures, the researcher seeks to determine the extent to which items
designed to assess a particular factor (i.e., facet or dimension of a con-
struct) actually do so. In general, subscales of a measuring instrument are
considered to represent the factors of a construct; all items in a particular
subscale are therefore expected to load onto that factor.

In the present application, all analyses were based on item pairs, rather
than on single items. (An elaboration of the rationale underlying this pro-
cedure, as well as the method of item-pair formation, is detailed in the
reference article cited for this chapter.) The CFA model hypothesized a
priori that: responses to the SDQIII could be explained by four factors
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FIGURE 4.1. Hypothesized Four-Factor Model of Self-Concept for the SDQIII.
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TABLE 4.1. Pattern of Estimated Parameters for Hypothesized Four-Factor
Model for the SDQIII

Factor Loading Matrix (A,)

GSC ASC ESC  MsC
Measure X (g,) () (&3 (€,)
GSC1 1 1.00 .0 .0 .0
GSC2 2 Ao .0 .0 .0
GSC3 3 N .0 .0 .0
GSC4 4 a1 .0 .0 .0
GSCS 5 Ay 0 .0 .0
GSC6 6 A 61 .0 .0 .0
ASC1 7 .0 1.00 .0 .0
ASC2 8 .0 . .0 .0
ASC3 9 .0 - .0 .0
ASC4 10 .0 ‘0,2 0 .0
ASCS 1 .0 ‘1,2 0O .0
ESC1 12 .0 .0 1.00 .0
ESC2 13 .0 .0 Na,3 -0
ESC3 14 .0 .0 ‘a3 0
ESC4 15 .0 .0 ‘s, -0
EScs? 16 .0 .0 Me,3 O
MSC1 17 .0 .0 .0 1.00
MSC2 18 .0 .0 .0 A18,4
MSC3 19 -0 -0 0 Mg,
MSC4 20 .0 .0 .0 "20,4
MSCS 21 .0 .0 .0 21,4

*ESCS5 was composed of item 9 only on the Verbal SC subscale.
GSCl to GSC6 = item-pairs 1 &2,3&4,5&6,7 & 8,9 & 10, and 11 & 12 of the General-
Self subscale; ASCI to ASC5 = item-pairs 1 & 2,3 & 4,5 & 6,7 & 8, and 9 & 10 of the
Academic SC subscale; ESCl to ESC4 = item-pairs 1 &2,3 & 4,5 & 6, 7 & 8 of the Verbal
SC subscale; MSCI to MSCS5 = item-pairs 1 & 2,3 & 4,5 & 6,7 & 8, and 9 & 10 of the

Mathematics SC subscale.
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TABLE 4.1. Continued

Factor Variance-Covariance Matrix ($)
GSC ASC  ESC MsC
(4 (0) () (8,)
GSC $1
ASC *n )
BsC 31 %32 %13
MsC a %52 %43 ®as

Error Variance-Covariance Matrix (96)
X % X3 X X X X X 10
X 9&1 .0 o0 .0 .0 0 .0 .0 .0 .0
X, 0 85 0 .0 O 0 .0 .0 .0 .0
3 0 .0 963 .0 O .0 .0 .0 .0 .0
X, .0 ©0 0 8%, .0 .0 .0 .0 .0 .0
Xg .0 ©0 .0 .0 % .0 .0 .0 .0 .0
X, .0 .0 .0 .0 .0 9 .0 .0 ,0 .0
X, 0 0 .0 .0 .0 .0 85
X3 © 0 0 0 .0 0 .0 % .0 .0
9 © 0 0 0 0 .0 0 0 % .0
Xo © 0 0 0 .0 .0 0 .0 .0 9510

hn ©° © 0o 0 0 O .0 .0 .0 .0
X5 0 o0 o0 0 .0 .0 .0 .0 .0 .0
X3 0 0 .0 .0 .0 .0 .0 .0 .0 .0

X14 .0 0 0 .0 .0 .0 .0 .0 .0 .0
15 .0 0 0 .0 .0 .0 .0 .0 .0 .0

16 .0 .40 o0 .0 0o .0 .0 .0 .0 .0
X17 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
18 .0 0 L0 .0 .0 .0 .0 .0 .0 .0
X19 .0 00 o0 .0 .0 0o .0 .0 .0 .0

20 .0 .0 o0 .0 .0 .0 .0 .0 .0 .0

.0

.0

.0

.0

.0

12
.0

.0
.0
.0
.0
.0
.0
.0
.0

.0

3]
$12

.0

.0
.0

.0
.0
.0
.0
.0

.0

13
.0

.0
.0
.0
.0
.0
.0
.0
.0
.0

.0
.0

®s13
.0
.0

.0
.0
.0
.0

.0
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(general SC, academic SC, English SC, and mathematics SC), each item-
pair would have a nonzero loading on the SC factor it was designed to
measure (i.e., the target factor), and zero loadings on all other factors
(i.e., nontarget factors), the four factors would be correlated, and the
uniquenesses for the item-pair variables would be uncorrelated. This
model is presented schematically in Figure 4.1, and the pattern of parame-
ters to be estimated is detailed in Table 4.1.

In Table 4.1 we see again that, for purposes of statistical identification,
the first X of each set of As designed to measure the same factor was fixed
to 1.0.

1 %15 %16 *17 s 20 *a
O O .0 0o .0 .0 .0 .0
O O O 0 .0 .0 .0 .0
O ©o .0 0 0 .0 .0 .0
O O L0 .0 0 .0 .0 .0
O .0 .0 .0 .0 .0 .0 .0
O O0o © .0 .0 .0 .0 .0
O 0o © .20 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 .0 .0 .0

.0 .0 .0 .0 .0 -0 .0 .0

.0 9515 .0 .0 .0 .0 .0 .0
8516 O .0 .0 .0 .0

.0 .0 .0 9517 .0 .0 .0 .0

.0 .0 .0 .0 8 18 *° .0 .0
.0 .0 .0 .0 .0 85 19 O .0
.0 .0 .0 .0 .0 0 85,4 .0
.0 .0 .0 .0 .0 .0 .0 9621
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2. LISREL Input

As in Chapter 3, we’ll now transform the model specification into LIS-
REL input statements; this information, together with the data presented
in correlation matrix form, is presented in Table 4.2.

Let us now review this model specification in light of our LISREL in-
put statements.

2.1. The DA Card

The DA card tells us that there are 21 variables (NI=21) [six item-pairs
measuring general SC and five item-pairs measuring each of the three
academic SCs], the sample size is 455 (NO =455), and the data are to be
analyzed as a correlation matrix (MA =KM). The input data are in the
form of a symmetric correlation matrix (KM SY).

TABLE 4.2. LISREL Input for Hypothesized Four-Factor Model of Self-Concept
for the SDQIII

CONFLRMATO Y FACTOH ANALISLS UF 5Uu FOR 4aLEs
LA NL=21 NO=455 MA=KM
!.‘.d
PoSCT Y 'Ghu2t °GSC3Y 'GsCet TGs0h 5508 'ASCY' 'ASCZ' fAsC3' tascu?
:HSEJ: TS50l TESC2T TESCHT TooCet fASCHY O TMSCTY 'MLC2Y 'MuU3 ' 'MSCa!
MaCo
Kd SY
(21'3.2)
100u
XXV
73 63100
00 21 5410v
70 oo 73 00100
ol 523 23 o0d 60100
24 20 1o 20 17 251GV
23 13 17 27 17 19 65100
25 20 22 238 19 22 57 T 00
29 244 co 31 25 24 56 03 721vv
27 2V 21 20 19 27 48 63 713 6310y
14 05 13 07 13 13 15 20 22 22 2210v
19 13 16 29 21 09 15 25 22 30 20 36100
21 13 20 17 23 24 18 23 21 23 27 38 40100
20 21 23 Y3 28 22 17 23 43 38 2% 41 45 37100
1o v9 UB 22 15 11 11 18 19 21 18 20 37 20 20100
lo 171 12 20 13 12 46 56 45 51 43 0« 10 v7 14 16100
19 16 13 1o 17 13 27 30 30 30 «1-u7 03 33 11 07 04100
16 13 16 13 17 14 32 46 49 46 49-02 12 37 13 13 69 7710v
20 14 17 1o 15 19 34 44 48 «7 54 01 10 49 15 09 o4 77 79100
12 11 13 1+ 09 15 37 42 45 4o 50 01 08 08 20 08 64 70 o7 713100
MU NA=21 JK=4 LX=FU Pd=5( TJ=31,¥Fi
Ful La(e,1) wa(3,1) LX(a,1) LXk(2,1) La(6,1 ) LA(3,2) Lx{+,2) LX(10.2)
e Lal{11,2) LA(13,3) LA{14,3) wX(12.3) wallo,3) LX(18.4) LA(19.4)
ot LA(20,4) LX(21,4)
Fxd £0(1,1) il(2,2) To{3,3) Ifulié,4) TO(2,5) Tu(b,.6) Tu(7,7) Tu(d.8)
£k To(9,9) IL(10,16) TOO11,11) Lo(12,14) F£o(13,13) T0(14,14) TD(15.15)
Fad To(106,10) TU(17,17) Tu(lo,18) LO(19.19 [D(20,20) TO(21,21
SE 10 La(1,1) LA(7,2) L&A(12,3) wal17,4)
3L o7 LA(2,1) LX(3,1) LA(4,1) LA(S3,1) LXK(o0,1) LX(8,2) Laly,2) LA(16,2)
ST o7 CA(11,2) Lk{13.3) Lal14.3) Lxk(15.3) LX(16843) CA(16.4) LX(19.4)
3T o7 wix(2u,4) LX(21,4)
3L b P 1,1) PH(242) P0( 3.3) Pn(u.ug
3L o3 PH(2,1) Prd(3,1) PH(3.,2) Prd{a,1) Pl +,2) PH(4,3)
ST »2 To(1,1) TU(2,2) Tl 3,3) Tol(é,4) Tu(>,5) Tu(6,0) 1u(7.7) TD(8.B)
3T o2 LU 3,%) TOC1G,10) cuo(11,11) iD(V2,12) TO(13,13) ID(1w,14) TD(15.15)
58 2 Ti(lo,16) TL(17,¥7) Tu(1d,18) TLU(19,19 Tu(20,20) Tu(21.21)
UJd No s [V ML s3 0 ¢
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2.2. The MO Card

The MO card tells us that we are working with an all-X model that con-
sists of 21 X variables (NX =21) and four latent (§£) factors (NK =4), the
factor loading matrix is full and fixed (LX =FU), the factor variance/co-
variance matrix is symmetric and free (PH=SY)," and the error variance/
covariance matrix is symmetric and fixed (TD=SY,FI). Note that al-
though the TD matrix has been specified as symmetric and fixed, each
error variance has been specified as a free parameter [TD(1,1)-
TD(21,21)]; no error covariances have been specified, thus making this
specification equivalent to a diagonal matrix (TD = DI,FR). Specification
of the error matrix as TD=SY,FI, however, acts as a time-saver in the
event that the researcher wishes to conduct post hoc analyses that include
correlated errors.

2.3. The OU Card

The OU card has specified that no start values are to be provided by the
program (NS) and that standard errors (SE), T-values (TV), modification
indices (MI), and a standardized solution (SS) are requested in the output.

3. LISREL Output

Discussion of the results will focus on four major aspects of the printout:
feasibility of the parameter estimates, adequacy of the measurement
model, goodness-of-fit of the overall model, and goodness-of-fit of indi-
vidual parameter estimates; only portions of the printout related to these
phenomena are tabled.

3.1. Feasibility of Parameter Estimates

The parameter estimates and standard estimates for each of the three ma-
trices are presented in Table 4.3.

An examination of Table 4.3 reveals all estimates to be acceptable; all
estimates are positive, no correlations are greater than 1.00 and all matri-
ces have positive definite status (i.e., there was no error message indicat-
ing that any matrix was not positive definite), and finally, the standard
errors range from 0.019 to 0.115.

'By default, the LX matrix is specified as fixed, and the PH matrix as free.
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TABLE 4.3. Selected LISREL Output: Parameter Estimates and Standard Errors

LISREL ESTIMATES (MAXIMUY LIKELIHOOD)
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3. LISREL Output

TABLE 4.3. Continued
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3.2. Adequacy of the Measurement Model

Let us now examine the squared multiple correlations (R?) for each of
the observed variables (item-pair measurements), and the coefficient of
determination for the entire model. These values are presented in Table
4.4,

TABLE 4.4. Selected LISREL Output: R* and Coefficient of Determination
SQUARED MULTIPLE CURRELATIONS FJ? X - VARIA3LES

Gscl____ 83522 ___ G3C3____ 3SCa____ 89C3____
0,708 0e359 J. 695> 0.52> Jo743
G5Co____ ASCL ____ AsC2 ASL3 4 ___
0.518 0.447 Oe7C3 Qe a1l 0.074

S5AUVARED MULTIPLE CIRRELATIINS FJI? K - VARIA3LES

AsCs . azl . ERCQI____ 2863 B3GR ___
0.638 0,330 Y] 0. 333 J7a43
EsCo____  M9CL____ Moeg 0 4bCI 0 dals_
0.191 0-581 05733 0.733 0.793

S5QUARED MULTIPLE CIORRELATIINS FO? X = VARIA3LES

TOTAL COEFFICIENI JF DETERMINATIIN FIR X = VARIAJLIS IS5 U.999

Looking first at the R? values, we see that, overall, the observed vari-
ables do a satisfactory job of measuring their target SC factors. Excep-
tions to this general finding, however, are the first pair of items measuring
academic SC (ASC1) and all item-pairs measuring English SC, which are
all less than 5.00. While these values are still reasonable, they are indica-
tive of somewhat less reliability than are the other item-pair measure-
ments.

Considering all item-pairs in combination, we can see by the value of
the coefficient of determination that the reliability of the measurement
model as a whole was exceptionally high (0.999).

3.3. Goodness-of-Fit of Overall Model

As shown in Table 4.5, the adequacy of the model as a whole in represent-
ing the observed data could bear some improvement. This statement is
based on the value of the likelihood ratio index (x* (183) = 515.56), the
GFI (0.825), and the AGFI (0.780). The RMR (0.046) indicates a margin-
ally good fit between the hypothesized (i.e., restricted) model and the
observed data (i.e., unrestricted model).

If, on the other hand, we assess the hypothesized model based on sub-
jective indices of fit, the picture appears somewhat better. For example,
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TABLE 4.5. Selected LISREL Output: Goodness-of-Fit of Whole Model
MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL :

CHI-5QUARE WITH 183 DEGREEZS OF FRZIEDIM IS 515.56 {PR0OJ. LEVEL = 0.000)

GJIDNESS JF FIT INDEX IS 0.900

ADJUSTZD GUODNES3 OF FIT INDEX IS 0.87%

ROOI MEAN SQUARE RESIDUAL IS 0.045

the x*/df ratio is 2.82. While this value is not great, it is, nevertheless,
within the broad range of acceptable values (see Carmines & Mclver,
1981).

Additionally, a null model was estimated in order to calculate the BBI.
The likelihood ratio index for this model was x* (210) = 5939.91, yielding
a BBI of 0.913; this value represents a marginally good fit to the data.

3.4. Goodness-of-Fit of Individual Model Parameters

Since we now know that the hypothesized model, although not a poor fit
to the observed data, is really only marginally good, we now need to lo-
cate the area of misfit in the model by examining the fit of individual
parameters; due to space limitations, only the 7T-values and MlIs are in-
cluded here. This portion of the output is presented in Table 4.6.

A review of the T-values reveals all parameter estimates to be substan-
tial; the magnitude of all estimates is >2.00, indicating that they are statis-
tically significant and thus essential to the model.

Looking at the MIs, however, we see that there are six estimates >5.00
in the factor loading matrix, and 25 >5.00 in the error variance/covariance
matrix. From a practical perspective, given that we are investigating a
single measuring instrument, this finding is not totally unexpected. With
respect to the LX matrix, the MIs reflect, for example, that some items
are tapping nontarget, as well as target SC factors; considering the known
moderate correlation among the four SC factors under study here, the
finding should not be surprising. Likewise, with respect to the TD matrix,
the MIs indicate correlated measurement errors—again, not an uncom-
mon finding among subscales of the same measuring instrument. Such
covariation frequently results from random error introduced by a particu-
lar measurement method; one example is that of method effects derived
from the item format associated with subscales of the same measuring
instrument.

Despite the likelihood that these explanations do account for the nu-
merous MIs associated with the present model, it seems appropriate to
investigate the extent to which the MI parameters, if relaxed, lead to an
improvement in model fit. One way of determining this information is to
investigate, under alternate model specifications, substantial changes to
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TABLE 4.6. Selected LISREL Output: 7-Values and Modification Indices

MODIFICATION INDICES

~AMB3DA X
___KsI 1 ___k3I_2 ___<31 3 ___KSL 3
»b3C1 O 1.442 J. 892 0,789
GwsC2 0.0 0.055 1347 0.213
w>3C3 0.0 1.291 J.C042 0.002
G5C4 0.0 3.317 Js168 0,431
33CH 0.0 6.751 J.000 1.661
aS5Co 0.0 1.090 Je043 0,201
ASCl1 0.692 0.9 2.87% 0e.346
ASC2 3.209 0.3 J.573 3.192
A3C3 1592 0.0 5407 1.949
ASCy 4,856 Q0.0 17.275 0.713
A3CH 0.354 0.0 0+483 10.206
=5C1 5.684% 0395 0.0 B.522
£E5C2 1.703 1,220 0«0 0,006
=5C3 1.921 0.062 J0.0 0.078
Z5Cq 4,836 1931 J.0 4,368
e3C5 0.003 0.223 0.0 1.551
M5C1 0.000 15.821 3.177 0.0
M45C2 0347 36.744 12,125 0.0
M5C3 0.115 0332 J0.C83 0.0
MSC4 00347 0,330 l.437 0.0
M5C5 1.065 4o 321 1,433 0.0
PHI
—-_KSI_1  ___K3l_2 ___¢31.3 ___KSI_ &
Kol 1 0.0
K>I 2 0.0 Os O
K>I 3 0.0 0.0 0.C
K31 & 0.0 Ve d 2.0 0.0
THZETA DELTA
$SCL____  @SC2____  $3€3____  asCa____  @8Ch____
GaSCl1 0.0
w>Ce 0,004 [0 2PV ]
G3C3 8.741 0.240 0.0
G3Ch Q.72 20869 19.802 0.0
GS5C5 Fe282 1.754 1.843 8,165 J .0
G5CH 0.096 Q.139 1.91% 15.071 2560
A5C1 0,698 0.634 3,793 1.380 0 e845
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a8Co_ ASCY__ AbSL2 ASCI ASCY
0.0
9140 0.0
Ve 0634 31.380 Oel
0.181 2.851 13.611 0.0
1397 0,042 46340 40670 0.0
0.043 10.572 17.952 4611 2837
0s 538 0.009 0312 0704 0137
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4946 0.823 0002 1.823 0,631
0.008 1.323 2426 3779 11.603
0.087 0e.361 00006 0,007 0.019
0547 23:291 15599 3228 6.843
4437 0.398 16.581 1,602 0139
De972 75938 3.959 4109 2157
4127 2:492 2758 0,058 0+722
2058 1.4306 0499 1.040 2703
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major parameters (As and ¢s) in the originally hypothesized model. Post
hoc model fitting of this nature has been termed ‘‘sensitivity analysis’’
(Byrne et al., 1989).

4. Post Hoc Analyses

The reader is reminded of the caveats presented in Chapter 3 concerning
the conduct of post hoc analyses. As noted earlier, such analyses are of
an exploratory nature and should be subjected to cross-validation with
independent samples before drawing firm conclusions from their findings.
As long as the researcher is cognizant of this fact, the conduct of post
hoc analyses can provide a valuable insight into the model under study.
One way to think of the post hoc process is as a ‘‘sensitivity analysis’’
whereby practical, as well as statistical significance, are taken into ac-
count. Let’s now turn to an application of these procedures to the present
data.

4.1. Model-Fitting Procedures

Using the MIs as the primary guide, a series of nested alternative models
were respecified and reestimated beyond the initially fitted model. In to-
tal, 27 post hoc models were specified; these included 22 error covari-
ances and 5 secondary loadings (item-pair loadings on nontarget factors).
The model-fitting process was continued until a statistically nonsignifi-
cant model was reached. This final model yielded a x* likelihood ratio
index of 183.75 (p = 0.06); the BBI was 0.969).

4.2. Sensitivity Analyses

Although we have determined the model of best fit statistically, the ques-
tion now focuses on the practical significance of these additional parame-
ters (i.e., their importance to the overall meaningfulness of the model).
Given the known sensitivity of the x> statistic to sample size, there is
always the concern of overfitting the model; that is, fitting the model to
trivial sample-specific artifacts in the data.

One way of determining this information is to test the sensitivity of
major parameters in the model to the addition of the post hoc parameters.
For example, if the estimates of major parameters undergo no appreciable
change when minor parameters are added to the model, this is an indica-
tion that the initially hypothesized model is empirically robust; the more
fitted model therefore represents a minor improvement to an already ade-
quate model and the additional parameters should be deleted from the
model. If, on the other hand, the major parameters undergo substantial
alteration, the exclusion of the post hoc parameters may lead to biased
estimates (Alwin & Jackson, 1980; Joreskog, 1983); the minor parameters
should therefore be retained in the model.
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One method of estimating this information is to correlate major parame-
ters (the As and &s) in the baseline model with those in the best-fitting
post hoc model; this is easily performed by means of SPSSX or any other
similar computer package. Coefficients close to 1.00 argue for the stabil-
ity of the initial model, and thus the triviality of the minor parameters in
the post hoc model. In contrast, coefficients that are not close to 1.00
(say, <0.90) are an indication that the major parameters are adversely
affected, and thus argues for inclusion of the post hoc parameters in the
final model.

This suggestion, however, is intended to serve only as a general guide
to post hoc model fitting. Clearly, decisions regarding the inclusion or
exclusion of post hoc parameters must involve the weighing of many addi-
tional factors. Other considerations, for example, might include: the mag-
nitude (mean or median) of secondary loading and/or error covariance
estimates (values less than 1.5 are considered trivial); differences in incre-
mental fit based on subjective indices, rather than on the x* statistic (see
e.g., Marsh & Hocevar, 1985); and the substantive meaningfulness of the
model relative to the theory and other empirical research in the area.

Applied to the present data, the preceding analyses yielded the follow-
ing information: the correlation between the estimated factor loadings of
the initial and final models was 0.997; the correlation between the esti-
mated variance/covariances of the initial and final models was 0.988; the
error covariance estimates of the final model, while statistically signifi-
cant, ranged from 0.02 to 0.14 (Md = 0.06, which was considered to be
relatively minor); the estimated secondary factor loadings, while statisti-
cally significant were also relatively minor, ranging from 0.12 to 0.24 (Md
= 0.07); and there were no incremental differences between the BBI val-
ues (A BBI = 0.000). This information, together with the fact that, sub-
stantively, these artifacts in the data are not unreasonable when analyses
are focused on a single measuring instrument, led to the rejection of the
final post hoc model in favor of the more parsimonious initially hypothe-
sized model as presented in Figure 4.1 and Table 4.1.

In light of these findings, it was concluded that the SDQIII is a psycho-
metrically sound instrument for measuring multidimensional facets of ad-
olescent SC.

5. Summary

This chapter focused on the application of LISREL CFA modeling in the
validation of a measuring instrument. We examined, in detail, the LIS-
REL input for this model and selected portions of the output. Of particu-
lar importance in this chapter was the conduct of a sensitivity analysis,
the crucial component of post hoc model-fitting procedures, to determine
the practical significance of additional parameters to the model.
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5

Validating Multiple Traits Assessed
by Multiple Methods: The Multitrait-
Multimethod Framework

In this application, we use LISREL CFA procedures to model hypothe-
ses related to convergent and discriminant validity, two indicators of con-
struct validity (see Campbell & Fiske, 1959). Specifically, we use a LIS-
REL modeling approach to examine data within a multitrait-multimethod
(MTMM) framework. As such, our analyses now focus on the validity of
multiple traits assessed by multiple methods. (For details of the study
related to this application, see Byrne, in press.)

The multiple traits in the present application, once again, are the four
facets of SC: general SC, academic SC, English SC, and mathematics
SC. The multiple methods are three different scaling techniques: Likert,
semantic differential, and Guttman scales, as represented by the SDQIII,
API, and the SES and SCA, respectively. Although the reference cited
for this application examines construct validity for both low and high aca-
demically tracked high school students, we will focus on analyses related
to the low track only; tests for invariance will be addressed in Chapter 6.

1. Assessment of Construct Validity:
The MTMM Matrix

Campbell and Fiske (1959) posited that claims of construct validity must
be accompanied by evidence of both convergent and discriminant valid-
ity. As such, a measure should correlate highly with other measures to
which it is theoretically linked (convergent validity) and negligibly with
those that are theoretically unrelated (discriminant validity). To deter-
mine evidence of construct validity, Campbell and Fiske proposed that
measures of multiple traits be assessed by multiple methods and that all
trait-method correlations be arranged in an MTMM matrix.

1.1. The Campbell-Fiske Approach to MTMM Analyses

The assessment of construct validity then focuses on comparisons among
three blocks of correlations: scores on the same traits measured by differ-
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ent methods (monotrait-heteromethod values, i.e., convergent validity),
scores on different traits measured by the same method (heterotrait-
monomethod values, i.e., discriminant validity), and scores on different
traits measured by different methods (heterotrait-heteromethod values,
i.e., discriminant validity). Specific criteria guide the inspection of these
values, but will not be discussed here since they are not relevant to the
present analyses. However, interested readers are referred to Byrne (in
press) for an extensive discussion of this technique.

Recently, methodologists have argued that a more sophisticated ap-
proach to assessing construct validity within the MTMM framework is
the analysis of covariance structures using LISREL modeling proce-
dures. Indeed, the CFA approach has been shown to have several advan-
tages over the Campbell-Fiske approach (see Marsh & Hocevar, 1983;
Schmitt & Stults, 1986; Widaman, 1985). First the MTMM matrix is ex-
plained in terms of the underlying latent constructs, rather than the ob-
served variables. Second the evaluation of convergent and discriminant
validities can be made at both the matrix and individual parameter levels.
Third, hypotheses related to convergent and discriminant validity can be
tested statistically, based on a series of hierarchically nested models. Fi-
nally, separate estimates of variance due to traits, methods, and unique-
ness are provided.

1.2. The LISREL Approach to MTMM Analyses

The first step in analyzing data within an MTMM framework is to formu-
late a LISREL model that comprises both the trait and method factors.
In the present application, we have four traits and three methods, yielding
a seven-factor model. A schematic presentation of this model is illus-
trated in Figure 5.1 and the related pattern of parameters is shown in
Table 5.1.

Compared with our two previous applications, we can see that this
model represents a more complex structure; three aspects of the parame-
ter specifications are important to note. First, each observed variable (the
Xs) loads on two factors—a trait as well as a method factor. Second,
in contrast with our two previous applications, the first A of each set of
congeneric measures in the factor loading matrix (A) is not fixed to 1.0
for purposes of identification. Alternatively, each trait (¢,, to ¢,,) and
method (¢ss to &,,) factor variance has been fixed to 1.0 for the same
purpose. Third, as recommended (Schmitt & Stults, 1986; Widaman,
1985), the trait-method factors' have been fixed to 0.0 to alleviate prob-

"The trait-method correlations are represented by: PH(5,1), PH(6,1), PH(7,1),
PH(5,2), PH(6,2), PH(7,2), PH(5,3), PH(6,3), PH(7,3), PH(5,4), PH(6,4), and
PH(7,4).
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FIGURE 5.1. Multitrait-Multimethod Model of Data: M = method; T = trait;
LIK = Likert scale; SD = semantic differential scale; GUTT = Guttman scale,
GSC = general self-concept; ASC = academic self-concept; ESC = English self-
concept; and MSC = mathematics self-concept. From Byrne (in press), “Multi-
group Comparisons and the Assumption of Equivalent Construct Validity Across
Groups: Methodological and Substantive Issues” in Multivariate Behavioral Re-
search. Copyright 1989 by Lawrence Erlbaum Associates, Inc. Reprinted with
permission.
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TABLE 5.1. Pattern of Estimated Parameters for Hypothesized Seven-Factor

CFA MTMM Model

Factor Loading Matrix (Ay)
Traits Methods
GSC ASC ESC MSC LIK SD GUTT

Measure X (5) (5) (&) (5) (&) (g (&)

A
SDQGSC 1 11 .0 .0 .0 )\15 .0 .0

A
SDQASC 2 .0 22 .0 .0 )\25 .0 .0
) A A
SDQESC 3 .0 .0 33 .0 35 .0 .0
A
SDQMSC 4 .0 .0 .0 )\44 45 .0 .0
APIGSC 5 X51 .0 .0 .0 .0 A56 .0
APIASC 6 .0 A62 .0 .0 .0 )‘66 .0
A
APIESC 7 .0 .0 73 .0 .0 A76 .0
A

APIMSC 8 .0 .0 .0 84 .0 )‘86 .0

A A
SESGSC 9 91 .0 .0 .0 .0 .0 97

. DN . . . .
SCAASC 10 0 10,2 0 0 0 0 )\10,7

A A
SCAESC 11 .0 .0 11,3 .0 .0 .0 11,7
A
SCAMSC 12 .0 .0 .0 12,4 .0 .0 )\12,7
Factor Variance-Covariance Matrix ()
Traits Methods

GSC ASC ESC MSC LIK SD GUTT
GSC 611
ASC %21 22
ESC 31 932 933
Msc %41 %42 943 %44
LIK .0 .0 .0 .0 Py
SD .0 .0 .0 .0 965 Y66
GUTT .0 .0 .0 .0 475 676 677
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TABLE 5.1. Continued
Error Variance-Covariance Matrix (66)

Xl X2 X3 X 4 X5 X 5 X7 X X X X X

X1 661 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
X2 .0 652 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
X3 653 .0 0 0
X4 0 0 964 0

X5 0 0 0 0 965 0 0 o] 0 0 0 0
X6 0 0 .0 0 0 666 0 0 0 0 0 0
X.7 0 0 .0 .0 0 0 967 0 0 0 0 0
X8 0 0 0 .0 0 0 .0 668 0] 0 0 0
X9 0 0 0 0 .0 .0 0 0 969 0 0 o]
xlO 0 0 0 0 0 .0 0 0 0 6510 0 0
xll 0 0 0 0 0 .0 .0 0 0 0 9511 0
X12 0 0 0 0 0 .0 0 0 0 0 0 9612

lems related to identification and estimation. Finally, both the traits and
the methods are specified as being correlated among themselves.?

To test this seven-factor model for evidence of convergent and discrim-
inant validity, we compare it against a series of more restrictive models
in which specific parameters have either been eliminated or constrained
to equal zero. Since the difference in x*(Ax)* is itself x*-distributed with
degrees of freedom equal to the difference in degrees of freedom for the
two models, the fit differential between comparison models can be tested
statistically. A significant Ax* argues for the superiority of the less restric-
tive model. (For a more extensive discussion of these alternative models
and their comparisons, see Widaman, 1985.)

A total of eight models, in addition to the hypothesized seven-factor
model, are specified in the present application; five are used to make
comparisons related to convergent and discriminant validity and three to
determine the degree of method bias associated with each scaling method.
Before examining these model comparisons, however, let us first study
the LISREL input and output for the proposed seven-factor model.

’The trait correlations are represented by PH(2,1), PH(3,1), PH(4,1), PH(3,2),
PH(4,2), and PH(4,3); the method correlations are represented by PH(6,5),
PH(7,5), and PH(7,6).
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2. LISREL Input

Translation of the pattern of parameter estimates into LISREL input
statements for this model (see Table 5.1) is presented in Table 5.2; the
data correlation matrix of means and standard deviations is also included.

We begin by reviewing this MTMM model specification in light of our
LISREL input statements.

2.1. The DA Card

Although the DA card tells us that there are 15 variables (NI=15), only
12 are used in the present application; thus, the SE card is used. (Recall
from Chapter 3 that the other three variables, academic scores, are not
included in these analyses). We see also that the sample size is 252 (NO

TABLE 5.2. LISREL Input and Parameter Specifications of Hypothesized
Seven-Factor MTMM Model

MTMM=G-LEVEL (MODEL1D)=TRAITS AND MITHODS CORRELATED (WIDMN#3C)=*"MTMMGLID™
DA NI=15 ND=252 MA=KM
LA

B

*SDASSCY '"S5O0QASC® *SDQESC!' *S5DIMSCT A
PAPLICSC® *S5CAESC® *APIMSI® "5CAMSC' *§
KM SY

(15F4,3)

1000

3211000

301 23019000

243 354-0601000

*SESGSC*®* *APIASC® *SCAASC®
*MATH?®

610 236 205 2771000

752 263 270 258 5861000

432 367 373 351 5354 4571000

275 332 252 232 226 273 5241000

146 427 513 032 184 110 474 37410C0

236 372 430 004 262 246 413 507 49810090

253 3399 054 7783 2€0 236 421 350 233 024100C

237 350-0132 720 211 216 372 446 078 075 7461000

033 361 0227 125 049 009 342 452 063 256 035 1541000

259 320 9073 103 125 038 313 232 144 433-22C 010 6971000
009 232 014 344 036-021 199 355 065 086 23C 4390 647 34210C0

S

762004 49,533 54.921 41,3591 75,831 31,133 70.290 24.802 57.821 25,333
55-851 230020 70,440 68,737 62,637
2

13.400 12.396

9.448 13.336 9,073 4343 L4345 4.474 10,627 4+343 10,609
90313 10,172 11.738 16.223
SCLECTION
1 23 457 511 6 3 10 12/
MI NX=12 NK=7 LX=FU PH=SY»FI TO=DI
FR LACG1ol) LXI5s1) LX(Is1) LX(252) LX(652) LX(10,2) LX(3+3) LX(7,3)
FR LX(11,3) LX(4»4) LX(3r»4) LX(1254)
FR LA(L93) wX(29s5) LX(3,3) LX(4»5) LX(5,5) LX{536) LX(7+6) LX(8s6)
FR LA(927) LX(10,7) LX({11s7) LX{12:7)
FR Prd(2s1) 2H(3s1) PH{4s1) PH(352) PH(42) PH(4,3)
FR PA(Bs3) PH(7:5) PH(T7,3)
5T 100 PA(121) PH(2:2) PH(3+3) PH(4,4) PA(5:,5) PH(5:,6) PH(7+7)
3T o2 LX{1le1l) LX({Ss1) LX(Is1) LX(3s3) LX(7+3)
3T =o4 LX{2+2) LX(622) LX(10,2)
ST o9 LX(11453) LX(464) LX(3,4) LX{12+4)
3 o) LA(L33) LX(2s5) LX{355) LX(4s5) LX(5:6) LX(696) LX(7s6) LX(8s6)
5T o9 LX(997) LX{1Cs7) LA(11+7) LX(12,7)
5T 02 PH(251) PH(3s1) PA(4s1l) PH(3,2) PH(422) PH(4,3)
5T 202 PH(6,5) PH(74+5) PH(7:5)
OT o2 TO(Lls1) TD(2es2) TD(353) TO(4s4) TO(5:5) TD(656) TD(7+7) TD(8,8)
ST +2 TD(I93) TD(10,10)TO(11s11) TD(12,12)
uu N5 52 TV MI
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PARAMETER SPECIFICATIONS
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=252) and that the data are to be analyzed as a correlation matrix (MA
=KM). Finally, the input data are in the form of a symmetric correlation
matrix (KM SY).

2.2. The MO Card

The MO card tells us that we are working with an all-X model that con-
sists of 12 X variables (NX=12) and 7 latent (§) factors (NK=7); the
factor loading matrix is full and fixed (LX = FU); the factor variance/co-
variance matrix is symmetric and free (PH=SY); and the error variance/
covariance matrix is diagonal and free (TD=DI).? In Chapter 4, it was
noted that specification of the error matrix as TD=SY, FI, can act as a
time-saver in the event that the researcher wishes to conduct post hoc
analyses that include correlated errors. The error matrix has not been
specified in this way here because in MTMM applications, model fitting
beyond the initially hypothesized model leads to innumerable problems
related to estimation and other considerations; thus, post hoc model fit-
ting is not recommended (Widaman, 1985).

2.3. The OU Card

The OU Card has specified that no start values are to be provided by the
program (NS), and that standard errors (SE), T-values (TV), and modifi-
cation indices (MI) are to be printed in the output.

3. LISREL Output

The assessment of convergent and discriminant validity can be deter-
mined in two major ways: examination of individual parameters repre-
senting trait and method factors, and the comparison of MTMM models.
Since the model comparison approach requires the input of a series of
alternatively specified models, we shall leave this procedure until later,
and we turn now to the the evaluation of individual parameters. We first
examine, however, the goodness of fit for the overall hypothesized seven-
factor model.

3.1. Goodness-of-Fit of the Overall Model

The overall fit of this model, based on the x* likelihood ratio index, was
slightly less than optimal (xj;;, = 105.21), indicating some degree of misfit
in the model. However, as noted earlier, post hoc model fitting of MTMM

*Recall that PH=SY and TD=DI represent free matrices by default.
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106 5. Validating Multiple Traits Assessed by Multiple Methods

TABLE 5.3. Selected LISREL Output: Goodness of Fit of Whole Model
MEASURES OF GOODNESS OF FIT FOR THE WHOLE MODEL

CHI-SQUARE MITH 33 DEGREES OF FREEDOM IS 105,21
{PROB, LEVEL = 0.000)
GOODNESS OF FIT INDEX IS 0879
ADJUSTED GOODNESS OF FIT INDEX IS 0,715

ROOT HMEAN SQUARE RESIDUAL IS 0045

models is problematic and not recommended.* Goodness-of-fit values for
the whole model are presented in Table 5.3.

3.2. Evidence of Convergent and Discriminant Validities

Assessments of trait- and method-related variance can be ascertained by
examining individual parameter estimates; we now focus on this mode
of determining evidence of convergent and discriminant validity. These
values, together with the standard errors, are summarized in Table 5.4;
statistical significance, as determined by the T-values, is indicated by
means of asterisks.

The magnitude of the trait loadings provides an indication of conver-
gent validity. As indicated in Table 5.4, all loadings were substantial and
statistically significant. We can conclude from these results that each trait
factor was well defined by the hypothesized model.

Except for the measurement of academic SC by the Guttman scale (A g ,
= 0.73), method factors tended to have weak to moderate loadings; only
7 of the 12 parameters were significant. These results indicate that
method bias effects, while present to a moderate degree for each of the
scales, was really only problematic in the measurement of academic SC
by the SCA.

Discriminant validity of traits and methods are determined by examin-
ing their respective factor correlation matrices. Looking first at trait dis-
crimination, we see that, except for correlations between English and ac-
ademic SC (0.72) and between mathematics and English SC (0.08), only
a modest claim of discriminant validity can be made. This finding, how-

*Since the largest MI pointed to an error covariance between the APIESC and
APIMSC, one further model was estimated in which TD(87) was specified as free.
However, as predicted by Widaman, problems of convergence curtailed the esti-
mation of parameters.
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ever, is consistent with current SC literature. In this regard, Marsh and
Hocevar (1983) have noted that only when correlations are extreme (i.e.,
approach unity) should researchers be concerned about a lack of discrimi-
nant validity. As such, claims of discriminant validity of the traits in the
present data appear justified. Additionally, Marsh and Hocevar have ar-
gued that the trait correlations should be consistent with the underlying
theory. In this regard, the trait correlations are consistent with the Sha-
velson et al. (1976) hierarchical model of SC and with other empirical
findings in the SC research (see e.g., Marsh, Byrne, & Shavelson, 1988).

Fromi the results presented in Table 5.4 we can conclude that discrimi-
nant validity among the method factors was reasonably good. These find-
ings suggest that, for the most part, method effects associated with each
measurement scale were fairly independent of the other measurement
methods incorporated in the model.

4. Comparison of MTMM Models

We turn our attention now to the assessment of convergent and discrimi-
nant validity by means of comparisons between pairs of alternatively
specified models. Of particular interest are comparisons between the hy-
pothesized seven-factor model and other more restrictive models. The
seven-factor model serves as the baseline model since it represents hy-
pothesized relations among the traits and methods, and typically demon-
strates the best fit to the data; it is the least restrictive model, having
both correlated traits and correlated methods. The models presented here
follow from the work of Widaman (1985).

We will first examine the LISREL input for each comparison model,;
only the statements beginning with the MO card will be included here
since the first six cards remain the same for all models. To assist the
reader in conceptualizing the pattern of model parameters, the LISREL
numbered summary of parameter specifications will accompany each
model input. This information will be followed by a summary of good-
ness-of-fit statistics for each model and the results of all model compar-
isons.

4.1. LISREL Input for Comparison Models

Model 1 (see Table 5.5) represents the null model and, as such, is the
most restrictive of all the models. It hypothesizes that each observed vari-
able is an independent factor (NX = 12; NK = 12); such independence thus
precludes correlations among the factors (PH=SY,FI). Furthermore,
since this leaves no indicator variables in the factor loading matrix, A, is
specified as zero (LX =ZE). Finally, the error variance/covariance matrix
is specified as a diagonal matrix (TD =DI).
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TABLE 5.5. LISREL Input and Parameter Specification Summary for Model 1
(Null Model)

MO MX=12 NK=12 LX=ZE PH=SY,FI TOD=DI
ST 100 PH(Lsl) PH(2,2) PHI(3,3) PH(4s4) PH(5,5) PH(0,0) PH(7.7) PH(Be8)
ST 1.00 PH(9s9) PH(10,10) PH(11,11) PA(12512)
ST o2 TD(1lsl) TD(2+2) TO(353) TD(4s4) TD(5,5) TD(0:5) TD(7:7) TD(8:8)
ST =2 TO(9s9) TD(10s10) TD(11s11) TO(12,12)
QU NS 3E Tv MI
PARAMETER SPECIFICATIONS
PHI
N 20Q96sC__ SDIASC SDuWESC SRIMSC APLGSC
SDQAGSC [}
SDQASC Q 0
SDQESC (o 0 ]
SDAM5C 0 0 0 0
AP IGSC C 0 Q 0 0
AP [ASC c 0 2 0 0
APIESC 0 [+ ) v 0
AP IMSC Q 0 3 0 0
SEIGSC 0 0 0 0 0
SCAASC 0 0 2 0 0
SCAESC c 0 b} 0 0
SCAMSC 0 ) i} Q 0
ARLASC ARLIESC ARLMSC 281336 2CAASL
0
0 0
0 0 [V
0 0 0 0
0 0 0 2 0
0 0 0 2 "]
0 0 0 0 o
PHI
. 3CAESC SCAMSC
SCAESC 0
SCAMSC 0 )
THETA DELTA
20Q65C 902ALG SRUESC 2D@MsC_ ARLGSC
T 2 3 4 5

AELAﬁQ_B AELE&Q_7 AELM&Q_E 2&135&-5 2CAA2L

THETA DELTA
§§AES§TT 2CAMIC
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TABLE 5.6. LISREL Input and Parémeter Specification Summary for Model 2

MO NX=12 NK=4 LX=FU PH=SY,FI TD=DI

FR LX(1s1) LX{Ssl) LX(Is1) LX(2+2) LX(6s2) LX(1052) LX(3:3) LX(753)
FR LX(11s3) LX{4:4) LX(854) LX(12+4)

FR PH({221) PH(3s1) PH(4 1) PH(352) P4{4s2) PH4(453)

ST 1.00 PH({1s1) PH(2s2) PH(3:3) PH(4s4)

ST 9 LX{1s1) LX(5s1) LX(9s1) LX(2s2) LX(6s2) LX(10s2) LX(3+3) LX(7:3)
ST 9 LXC11:3) LX(4e4) LX(8s4) LX(12:4)

ST 202 PH(2s1) PH(301) PH(4s1) PH(352) PH(4s2) PH(453)

ST «2 TD(1ls1) TD(2,2) TO(3:3) TD(4s4) TO(5:5) TD(5.06) TO(7»7) TD(8s8)
ST 2 ID(959) TD(10-10) TD(11,11) TD(12:,12)

QU NS SE TV MI

PARAMETER SPECIFICATIONS

LAM3DA X
R ---KS1_ 1 K31 _2 —--S81.3 ——_KSL_ 3
50QG65C 1 0 3 J
SDQASC 0 2 3 0
SDQESC e} 0 3 J
SDAMSC c 0 0 +
AP IGSC g 0 0 9]
APIASC 0 6 b) V]
APIESC 0 0 7 0
AP IMSC 0 0 0 3
SEIGSC 9 0 0 0
5CAASC 0 10 0 o]
SCAESC 0 0 11 0
SCAMSC 0 0 0 12
PHI
) ~--KSI_1 ———K3L_< ---KSI1.3 ——_ksl_4
K51 1 0
KSI 2 13 0
K5I 3 14 15 0
K31 6 16 17 13 9
THETA DELTA
38965¢C __ SDQASC__ SDYESC _ SDAMsSC ARLIGSC
13 20 21 22 23
APIASC _ ABIESC | APIMSC SEL83C SCAASC
24 25 2% 27 23

THETA DELTA
3CAESC . 3CAMSC__
25 30

Model 2 (see Table 5.6) is postulated to have four trait factors that are
allowed to correlate; no method factors are specified.’ As such, the model
is specified as having 12 observed variables (NX = 12) that measure four
latent factors (NK =4). The factor variance/covariance matrix (®) is spec-
ified as symmetric and fixed (PH = SY,FI) with the variances fixed to 1.00
for identification purposes and the covariances left unconstrained [FR
PH(2,1)-—-PH(4,3)].

°In fact, the same results are obtained if the model is specified as a seven-factor
model, allowing the trait factors to remain fixed at 0.0. This will be illustrated
with Model 5.
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TABLE 5.7. LISREL Input and Parameter Specification Summary for Model 3

MJ NX=12 NK=7 LX=FU PH=SY.FI TD=DI

FR LX{Llsl) LX(561) LX(9s1) LX(2s2) LX(6s2) LX{10s2) LX{353) LX(753)
FR LX(11s3) LX(454) LX(8o4) LX(12:4)

FR LX{1s3) LX(2:5) LX(3:3) LX(4e5) LX(5:55) LX(6s6) LX(7s6) LX(8:6)
FR LX{9+7) LX{10s7) LX(11s7) LX(12:7)

FR PH(2s1) PH(3s1) PH(4s1) PH(3:2) PH(452) PH(4,3)

ST 1.00 PH(Ls1) PH(2+2) PH(3+s3) PHU4s4) PH(Ss5) PH(6+6) PHIT,7)

ST 9 LX{1s1) LX{S»s1) LX(951) LX(2s2) LX(5s2) LX(10s2) LX(353) LX(753)
ST 9 LX(1153) LX(4s4) LX(3:%) LX(12s4)
ST o9 LX(195) LX(2s5) LX(3:5) LX(495) LX(5s6) LX(6+6) LX(7:6) LX(B:26)
ST o9 LX(997) LX(10:s7) LX{11+7) LX(12,7)
ST 202 PH(2+s1) PH(3e1) PHA(4s1) PH(362) PH4{42) PH(4s3)
ST o2 TD(1s1) TD(252) TO(3s3) TD(4s4) TD(5,5) TD(6s6) TD(7s7) TD(8,8)
ST 22 TD(Ys3) TD(10,10) TD(11s11) TD(12,12)
OU NS SE Tv M™I
PARAMETER SPECIFICATIUNS
LAM3DA X
_-_KSI_1 ___KsL,2 ___XSI1.3 ___KSI & ___KSL 5
SDAG5C 1 0 2 0 2
3D3A5C C 3 4] 0 4
SDQESC o} [¢] 3 0 6
30QM5C C 0 0 7 3
AP IGS5C S Bl ] Q 0
AP IASC Q 11 0 Q 0
APIESC C 52 13 0 0
AP IMSC ¢ 0 0 15 0
SEIGSC 17 0 ] [¢] 0
SCAASC 4} 19 0 0 0
SCAESC [¢] o] 21 0 0
SCTAMSC 0 Q o 23 0
___Ksl_ 6  ___X31_7
4] Q
o) Q
4] J
0 Q
10 Q
12 ¢]
14 9
15 Q
Q i3
0 29
0] 22
[o] 24
PHI
—__KSI_1 __Ksl 2 ___KSI 3 ___KSI_ s KSL_$
KsI 1 4]
KSI 2 25 0
KSI 3 26 27 J
«3I 4 28 29 30 ]
K3l 5 4] V] 2 Q 0
K5I 6 0 0 J 0 [¢]
KSI 7 0 Q bl 0 4]
___KSI_6  ___KsL_1
(o]
] 3
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TABLE 5.7. Continued
THETA DELTA

THETA DELTA
SCAESC . SCAMSC__
41 42

Model 3 (see Table 5.7) is hypothesized as having seven factors (NK
=7): four correlated trait factors and three uncorrelated (i.e., orthogonal)
method factors. Thus, while the trait factors are specified as free, the
method factors are left fixed at 0.0 by default (PH=SY,FI).

Model 4 (see Table 5.2) is the hypothesized seven-factor model dis-
cussed earlier.Model 5 (see Table 5.8) postulates a three-factor model
(NK =3) with three correlated method factors; no trait factors are speci-
fied. Thus in the Phi matrix, the factor covariances are specified as free
[PH(2,2), PH(3,2)].

Model 6 (see Table 5.9) postulated a seven-factor model with trait fac-
tors perfectly correlated as indicated by the start values for the trait co-
variances [ST 1.00 PH(2.1)-———PH(4,3)] and method factors allowed to
correlate freely [FR PH(6,5) PH(7,5) PH(7,6)].

In order to determine the extent to which each measurement scale was
contributing to method bias, three additional models were postulated for
comparison purposes. These are as follows.

In Model 7 (see Table 5.10), the Likert scale has been deleted. Thus,
although it is specified as a seven-factor model, factor loadings for the
Likert scale [LX(1,5) LX(2,5) LX(3,5) LX(4,5)] and correlations between
the Likert and the other scales [PH(6,5) PH(7,5)] have been fixed to 0.0.
Here again, this model, as well as Models 8 and 9 could have been alterna-

TABLE 5.8. LISREL Input and Parameter Specification Summary for Model 5

MO NX=12 NK=7 LX=FU PH=SY.FI TD=DI
FR OLX(1s5) LX(2s5) LX(35,3) LX(455) LX(5s5) LX(6:6) LX{T7s06) LX(8B:+6)

FR LX{9s7) LX(10s7) LX(1157) LX(1257)

FR PH({6+5) PH(7:5) PH(T7,5)

ST 1.00 PH{191) PH{2+s2) PH(3»3) PH(458) PH(5s5) PH(0+86) PH(T7,7)

ST 3 LX(1:5) LX(2s5) LX(3s5) LX(4+5) LX(5s6) LX(6+5) LX(756) LX(8,6)
ST o3 LX(967) LX{10o7) LX(11s7) LX(12:7)

ST 202 PH(6s5) PH{7:5) PH(7e5)

ST 2 TD(1lel) TD(2,2) TD(3,3) TD(4s4) TD(5+5) TO(6s6) TD(T7,7) TD(Bs38)
ST «2 TD(9+9) TD(10,10) TO(11,11) TD(12s12)

QU N5 SE TV MI
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PARAMETER SPECIFICATIONS
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TABLE 5.9. LISREL Input and Parameter Specification Summary for Model 6

MO NX=12 NK=7 LX=FU PH=SY,FI TD=DI

FR LXC1s1) LX(Ss1) LX(9s1) LX(2s2) LX(652) LX(10s2) LX(3+3) LX(763)
FR LX(11s3) LX(424) LX(B8s4) LX(12:4)

FR LX(1e5) LX(2s5) LX(353) LX{(455) LX(5:5) LX(6s6) LX(7:6) LX(8s0)

FR LX(9e7) LX(10s7) LX(11,7) LX(12,7)
FR PH(6+5) PH(T7s5) PH(7,:6)
ST 1.00 PH(lsl) PH(2,2) PH(3+s3) PH(4s4) PH(5s5) PHI(5+6) Prl7,7)
ST «9 LX(1s1) LX{5s1) LX(9s1) LX(3,3) LX(7,3)
ST ~e& LX(2s2) LX(642) LX(10,2)
ST 9 LX(1153) LX{4e4) LX(354) LX(1258)
ST o3 LX(1s3) LX(2e5) LX(3+5) LX(45) LX(5,6) LX(6s3) LX(7+6) LX{Bs6)
ST 3 LX(957) LX(10s7) LX(11s7) LX(12s7)
ST 1.0 PH(2,1) PH(3,1) PA(4el) PH(3+2) P4(4s2) PH(4,3)
ST <02 PH(6,5) PH(T7+5) PH(7,:6)
ST +2 TD(1s1) TD(2+2) TOD(3:,3) TDU4s4) TD(5:5) TO(6s5) TO(7,7) TO(8,8)
ST o2 TD(9s9) TD(10610) FD(11s11) TD(12,12)
OU NS SE TV MI
PARAMETER SPECIFICATIONS
LAMJDA X
---Ksi 1 ___ K3l 2 ___KSI 3 ——-Ksl s+ ___KSL O
SDQAGSC 1 J 0 J 2
SDQASC 0 3 ] 9 4
SDAESC 0 0 5 0 6
SDAMSC C 0 o] 7 8
APIGSC S 0 3 J 0
AP IASC Q 11 0 ) 0
AP IESC Q 8] 13 9 0
AP IMSC 0 9 0 15 )
SEIGSC 17 0 b) 0 0
SCAASC G 19 0 0 0
SCAESC 0 0 21 B 0
SCAMSC ] 0 0 23 0
——-Kal_ g —--K31_1
0 0
0 )
0 a
0 9
10 2
12 0
L4 ]
1o 0
0 13
0 20
0 22
0 24
PHI
---K31_ L ___KSI 2 ___ X513 ---K8Ll &  ___ k51 5
KSI 1 0
KSI 2 ] g
KsSI 3 ¢ 0 3
KSI 4 c 0 0 o)
KSI 5 [} 0 9 2 0
K5I 6 0 ] 0 9 25
KSI 7 ] o 2 0 26
——-K3l_¢ ---K3l_1
0
27 0
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TABLE 5.9. Continued
THETA DELTA

A3 JE3C__ 30 S 1635C__
SQQ.GE&EE 521_29_2..5 3024 2530 RQQM.SSJI AR §§£32

ARLASC ARIEaC ARIMOC _ 2cle3C SCAARC
33 35 35 36

THETA DELTA
SCAESC__  2CAM3C__
38

TABLE 5.10. LISREL Input and Parameter Specification Summary for Model 7

MO NX=12 NK=7 LX=FU PH=SY,FI TD=DI
FR LXC{1el) LX(Ss1) LX(991) LX(292) LX(6+2) LX(1002) LX(3e3) LX(7,3)
) 404) LX(8s4) LX(1204)
26) LX{(7+6) LX(8,6)
0s7) LX(U1157) LX(1257)
»1) PH(4,1) PH(3,2) PH(4,2) PH(4+3)
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TABLE 5.10. Continued

PHI
KST 1 ---Sﬁl_% -—KSl_2 —-KS1 3 ---K21 % ——-8SL_9
KSI 2 21 0
KSI 3 22 23 0
KSI 4 24 25 26 0
KSI 5 c 0 0 0 0
Ks1 6 0 0 0 9 0
K3I 7 Q 0 ) 0 0
K31 9% -—-K31_27
0
27 0
THETA DELTA
S S s S 5 5 G5
-QQ&,SZB _935_923 euuﬁﬁs35 iQQH;SBT AEL&§§_6
A APIE APIMSC 3E1G5C 5€
A21.§§32 -2125233 ....._§_3K 3elesc o §QAA:L33
THETA DELTA
SCAESC SCAMSC
37 338

tively specified as six-factor models; as such, it would not be necessary
to constrain the deleted scale parameters to 0.0.

In Model 8 (see Table 5.11), the semantic differential scale has been
deleted. Accordingly, the related parameters have been fixed to 0.0
[LX(5,6) LX(6,6) LX(7,6) LX8,6) PH(6,5) PH(7,6)].

Finally, in Model 9 (see Table 5.12), the Guttman scale has been elimi-
nated. As such, the following parameters were fixed to 0.0: LX(9,7)
LX(10,7) LX(11,7) LX(12,7) PH(7,5) PH(7,6). Note that here, the ¢s are
fixed to 0.0 by default.

Goodness-of-fit indices for each of these MTMM models are summa-
rized in Table 5.13. As shown here, Model 1, the most restrictive model,
serves as a null model against which competing models are compared in
order to determine the BBI. As expected, the hypothesized seven-factor
model (Model 4) exhibited the best fit to the data.

4.2. Results of MTMM Model Comparisons

All model comparisons, together with their goodness-of-fit indices are
presented in Table 5.14.
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TABLE 5.11. LISREL Input and Parameter Specification Summary for Model 8

MO NX=12 NK=7 LX=FU PH=SY»,FI TD=DI

FR LX{15s1) LX{5s1) LX(991) LX(2+2) LX(652) LX(1052) LX{(3:3) LX(7:3)
FR LX(L1s3) LX(4s4) LX(B8r4) LX(12s6)

FR LX(1s5) LX{(2e5) LX(33) LX(4s5)

FR LX{9s7) LX(10,7) LX(11.7) LX(12,7)

FR PH{2s1) PH(351) PH(4s1) PH(3+2) PH(4:2) PH{4,3)

5T 1.00 PH(1s1) PH(2s2) PH(3:3) PH(4%s8%) PH(5.,5) PH(6s6) PH{ T+ 7)
ST 9 LX(1lsl) LX(S5el) LX(9s1) LX(3,3) LX(7s3)
ST =.4 LX(2,2) LX(6s2) LX(10,2)
ST o9 LX(11+3) LX(4e4) LX{Bs4) LX(12:8)
ST o9 LX(1+5) LX(2+5) LX(3+5) LX(&s5)
ST o9 LX(9s7) LX(10s7) LX(11+s7) LX(12,7)
ST 202 PH(2,1) PH(3,1) PH{as1) PH(3,2) PA(4s2) PH(4:+3)
5T .02 PH{7+5)
ST o2 TD(lsl) TD(252) TD(3s3) TO(4s4) TD(6s6) TD(7+7) TO(8Bs8)
ST o2 TO(9+9) TD(10,10) TD(11s11) TD(12s12)
ST .01 TD(5.5)
OU N3 SE TV MI
PARAMETER SPECIFICATIONS
LAMIDA X
---K31_1 —-—K2al ¢ ~-KS1_ 3 ---KSL_ 4 —--KSL >
5DQ35C 1 3 ] ] 2
30QA5C 0 3 0 0 4
50QE5C 0 0 5 2 6
50aM53C 0 ) 3 7 8
AP 1GSC 9 2 3 ") 0
APIASC e 10 2 0 o
AP IESC o 0 11 0 0
AP IMSC 0 0 &) 12 0
3E165C 132 0 ) ) 0
SCAASC G 15 0 ) 0
SCAESC 0 0 17 0 0
5CAM5C o 0 0 19 0
———K3l_ O -——-X2L_17
0 ]
0 0
0 )
0 3
o Q
[¢] 0
) 2
0 0
0 14
0 10
0 18
0 20
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K31 3 22 23 0
KT 4 24 25 25 0
KSI 5 c 0 0 9 0
K3I 6 0 0 0 0 0
K31 7 0 0 3 9 27
——-K31 6 ---KSL 7
0
0 0
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TABLE 5.11. Continued
THETA DELTA
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TABLE 5.12. LISREL Input and Parameter Specification Summary for Model 9

MO NX=12 NK=7 LX=FU PH=SYsFI TD=DI
FR LX{1sl) LX(S5s1) LX(2+2) LX{9s1) LX{6s2) LX(10s2) LX(3s3) LX(763)

FR LX(11s3) LX(404) LX(8:s4) LX(12+4)

FR LX{1s5) LX(2:5) LX(3s3) LX(4e5) LX(565) LX(6s6) LX(T7e6) LX(8:6)
FR PH{2s1) PH(3s1) PH(4s1) PH(3,2) PH(4s2) PH(43)

FR PH(695)

FI TD(5»5)

ST 100 PH(11) PH(2:2) PH(353) PH{454) PH(S5:5) PH(6:6) PH(T7:+7)
ST 29 LX(1s1) LX(S5s1) LX(9el) LX(3:J) LX( 70 3)

ST =8 LX{(2:2) LX(6+2) LX{10s2
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ST 9 LX(2s5) LX(S5+6) LX(6+s6) LX(7s6) LX(BQG,
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ST 2 TD(9+s9) TO(10,10) TD(11,11) TD(12s12)

ST «01-TD{(5,5)

OU NS SE TV ¥MI

PARAMETER SPECIFICATIONS

LAMBDA X

. ---Ks1 l __ kSl 2 ___¢31. 3 ___Kal s ___K3Ll O
SDQG5C 1 0 0 0 2
SDQASC 0 3 9 0 4
SDQESC o 0 5 0 6
SDAM5C o 0 ) 7 3
AP IGSC S 0 0 0 0
APIASC 0 1t 0 0 0
APIESC g 0 13 9 0
APIMSC 0 0 0 15 0
SEIGSC 17 9 0 ] 0
SCAASC c 13 3 0 0
SCAESC o 0 13 0 ]
SCAMSC e 0 0 20 0

-——K3L 6  ___Kal I

0 9

0 Q

0 Q

0 9

10 0

12 ]

14 0

16 0

0 9

0 0

0 0

0 v

spssYA)i@yahoo.com
Gkl Jilal 545523



WWW.SPSS-pasw.ir
4. Comparison of MTMM Models 119

TABLE 5.12. Continued

PHI
---K81_ 1 ___KSIL 2 ___KSI 3 ___Ksl & ___K>L 5
KSI 1 0
K5I 2 21 0
KSI 3 22 23 2
KSI 4 24 25 26 0
KSI 5 o 0 0 0 0
KSI 6 0 0 0 0 27
KsI 7 ¢ ] 0 ] 0
K3l 6 ___ K31 1
0
] 0
THETA DELTA
C DAASC DAIsC SDAMS 5
§§Q§§_23 5._..;;_25 §.__-§_35 -Q-_ggﬁ AELQ_Q_G
5 3 APIMSC SELSS SCAASC
AELAE%Z ABIESC.,  ABIMIC- _L:.L.ehgzg SCAASC
THETA DELTA
. sc
;Qﬁi&'ﬁ isl.\.!la_gg

Let’s begin with a comparison of models to determine the strength of
added components in the hypothesized model. For example, by compar-
ing Model 3 with Model 4, we can determine the impact of correlations
among the method factors (as with comparisons between Models 2 and
3). By so doing, we see that although Model 4 hypothesizes correlations
among both the trait and method factors, method correlations appear to
be relatively weak (Axg, = 9.48; p <0.05; Ax*/df = 0.0; ABBI = 0.02).
These results suggest minimal method-related variance in that the three
measurement scales are operating independently and support findings
from our earlier investigation of the individual method parameters.

To test for convergent validity, we now compare Model 4 with Model
5 in which no trait factors are specified. A significant difference between
these two models argues for the presence of trait factors, and thus for
evidence of convergent validity. As shown in Table 5.14, the Ax* was
highly significant, thus providing strong evidence of convergent validity
for the trait factors.

Since the discriminant validity of traits argues for their zero intercorre-
lations, evidence of same can be tested by comparing the baseline model
(Model 4) with one in which perfect correlations among traits are hypoth-
esized (Model 6). The highly significant difference resulting from this
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TABLE 5.13. Goodness-of-Fit Indicés for Multitrait-Multimethod Models

Model X df  x7/df  BBI

1. 12 uncorrelated factors 1,681.05 66 25.47 —
(null model)

2. 4 correlated trait factors 216.26 48 4.51 .871
no method factors

3. 4 correlated trait factors 114.69 36 3.19 914
3 uncorrelated method factors

4. 4 correlated trait factors 105.21 33 3.19 .937

3 correlated method factors
(baseline model)

S. no trait factors 868.09 51 17.02 .484
3 correlated method factors
6. 4 perfectly correlated trait 403.61 39 10.35 .760

factors, freely correlated
method factors

7. 4 correlated trait factors 154.14 39 3.95 .908
2 correlated method factors
(semantic differential, Guttman)

8. 4 correlated trait factors 110.73 39 2.83 .932
2 correlated method factors
(Likert, Guttman)

9. 4 correlated trait factors 133.00 39 3.41 921
2 correlated method factors
(Likert, semantic differential)

From Byrne (in press), “Multigroup Comparisons and the Assumption of Equivalent Con-
struct Validity Across Groups: Methodological and Substantive Issues” in Multivariate Be-
havioral Research. Copyright 1989 by Lawrence Erlbaum Associates, Inc. Reprinted with
permission.

comparison argues for strong evidence of discriminant validity for the
traits in the hypothesized model. The discriminant validity of method fac-
tors (i.e., no method bias) can be tested by comparing Model 4 with
Model 2 in which no method factors are specified. While this comparison
yielded a statistically significant Ax’, suggesting evidence of method bias,
this effect was substantially weaker than that related to the trait factors.

Finally, to determine the extent to which each measurement scale is
contributing to the method bias, we can compare Model 4 with Models
7, 8, and 9 in which the Likert, semantic differential, and Guttman scales,
respectively, have been deleted. These results show significant method
effects for the Likert and Guttman scales; those associated with the se-
mantic differential were not significant. Overall, the Likert scale appears
to be the heaviest contributor to method bias. It must be pointed out,
however, that these three model comparisons were conducted for illustra-
tive purposes only. In actual fact, differences in the subjective fit indices
demonstrated negligible method effects.
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TABLE 5.14. Goodness-of-Fit Indices for Comparison of Multitrait-Multimethod
Models®

Differences in

Model comparison X df xdf BBI
Tests of Added Components
Model 1 vs Model 2 1,464.79 18 20.96 —
Model 2 vs Model 3 101.57 12 .96 .04
Model 3 vs Model 4 9.48’ 3 0.00 .02

Test of Convergent Validity
Model 4 vs Model 5 (traits) 762.88 18 13.83 45

Tests of Discriminant Validity

Model 4 vs Model 6 (traits) 298.40 6 7.16 .18
Model 4 vs Model 2 (methods) 111.05 15 1.32 .07

Tests of Method Bias

Model 4 vs Model 7 (Likert) 48.93 6 .76 .03
Model 4 vs Model 8 5.52° 6 .36 .00
(semantic differential)
Model 4 vs Model 9 27.79 6 22 .02
(Guttman)

p <0.05

*Unasterisked x* difference values are statistically significant at p<0.001.

"Not statistically significant.

From Byrne (in press), “Multigroup Comparisons and the Assumption of Equivalent Con-
struct Validity Across Groups: Methodological and Substantive Issues” in Multivariate Be-
havioral Research. Copyright 1989 by Lawrence Erlbaum Associates, Inc. Reprinted with
permission.

5. Summary

This chapter focused on the analysis of a multitrait-multimethod matrix
using the LISREL methodology in determining evidence of convergent
and discriminant validity. Two possible means to deriving this evaluative
information were demonstrated: the examination of individual parameters
related to trait and methods factors and the comparison of alternatively
specified models in which various aspects of construct validity are con-
sidered. Finally, the comparison of competing models was used to iden-
tify the extent of method bias associated with particular measuring instru-
ments.
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6

Testing for Measurement and
Structural Invariance
of a Theoretical Construct

In this section, we focus on the analysis of CFA models comprising two
groups of subjects. Of primary interest are procedures involved in testing
for the invariance (i.e., equivalence) of measurements and/or structure
across two or more groups.

In our first multigroup application, we test hypotheses related to equiv-
alencies across gender related to multiple SC measurements and the fac-
torial structure of a multidimensional SC comprising general SC, aca-
demic SC, English SC, and mathematics SC. This work follows from the
previous study examined in Application 1, Section II. (For details of the
study related to this application, see Byrne & Shavelson, 1987.)

1. Testing for Factorial Invariance:
The General Framework

1.1. Preliminary Single-Group Analyses

As a prerequisite to testing for factorial invariance, it is convenient to
consider a baseline model that is estimated separately for each group.
As noted in Section II, this model represents the most parsimonious, yet
substantively most meaningful and best-fitting model to the data. Since
the goodness-of-fit value and its corresponding degrees of freedom are
additive, the sum of the x’s reflects how well the underlying factor struc-
ture fits the data across groups.

However, since instruments are often group-specific in the way they
operate, baseline models are not expected to be identical across groups.
For example, whereas the baseline model for one group might include
correlated measurement errors and/or secondary factor loadings, this
may not be so for a second group. A priori knowledge of such group
differences, as will be illustrated later, is critical to the conduct of invari-
ance testing procedures. Although the bulk of the literature suggests that
the number of factors must be equivalent across groups before further
tests of invariance can be conducted, this is only a logical starting point,
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not a necessary condition; only the comparable parameters within the
same factor need be equated (Werts, Rock, Linn, & Joreskog, 1976).

Since the estimation of baseline models involves no between-group
constraints, the data may be analyzed separately for each group. In test-
ing for invariance, however, constraints are imposed on particular param-
eters, and thus the data from all groups must be analyzed simultaneously
to obtain efficient estimates (Joreskog & Sorbom, 1985); the pattern of
fixed and free parameters remaining consistent with that specified in the
baseline model for each group.

Tests of factorial invariance, then, can involve both measurement and
structural components of a model. In LISREL notation, this means that
the factor (lambda, A), error (theta, ©), and latent factor variance-covari-
ance (phi, ®) matrices are of primary interest. If, however, the invariance
testing includes factor means, then the regression intercept (nu v) and
mean (gamma, I') vectors are also of interest; this issue is addressed in
Application 6 (see Chapter 8).

1.2. Subsequent Multigroup Analyses

Tests of factorial invariance can begin with an overall test of the equality
of covariance structures across groups (i.e., Hy: 3, = 3, = . . . 3, where
G is the number of groups). As such, failure to reject the null hypothesis
is interpreted as evidence of invariance across groups; except for mean
structures, the groups can be treated as one. This means, then, that the
variance-covariance matrices can be pooled and that subsequent investi-
gative inquiry would be based on single-group analyses; there is no need
to analyze each group separately or simultaneously. Rejection of this hy-
pothesis, on the other hand, argues for the testing of a series of increas-
ingly restrictive hypotheses in order to identify the source of nonequiva-
lence.

Unfortunately, the global test of invariant variance-covariance matri-
ces, while seemingly straightforward and reasonable, often leads to con-
tradictory findings thereby contributing more to confusion than to enlight-
enment with respect to equivalencies across groups. For example,
sometimes this initial hypothesis is found tenable, yet subsequent tests
for the invariance of particular measurement and/or structural parameters
must be rejected (see e.g., Joreskog, 1971a). Conversely, this initial hy-
pothesis may be rejected, yet the measurement and/or measurement pa-
rameters may be found to be group-invariant. Thus, while Joreskog sug-
gested that the global hypothesis of equivalent covariance matrices be
tested first, before proceeding to more specific hypotheses, he is nonethe-
less cognizant of various problems associated with its application. Fur-
thermore, Rock, Werts, and Flaugher (1978) have advocated that even if
this hypothesis cannot be rejected, the researcher should still conduct
subsequent tests for the invariance of particular parameters.

Such inconsistencies in the omnibus test of invariance derive from the
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fact that there is no baseline model for the test of invariant variance-co-
variance matrices. As a result, this test becomes much more stringent
than is the case with subsequent tests of invariance related to the factors
(Muthén, personal communication, Oct. 1988). Consequently, Muthén
contends that in general the omnibus test is of little import or assistance
in testing for invariance across groups, and thus is not a necessary prereq-
uisite to the conduct of relatedly more specific hypotheses bearing on
factorial invariance.

Let us now continue, then, with tests of hypotheses related to factorial
invariance. Specifically, these hypotheses focus on the invariance of: (1)

the number of factors (i.e., H,: Ajx = A,x = . . . Agx, where kK = number
of factors); (2) the factor-loading pattern (i.e., H: A, = A, = ... Ap);
(3) the factor variances and covariances (i.e., H,: ®, = &, = . .. ®y);
and (4) the error/uniquenesses (i.e., H,: ©, = 6, = . . . 6,). The tenabil-

ity of Hypotheses 1 and 2 is a logical prerequisite to the testing of Hypoth-
eses 3 and 4.

The procedures for testing the invariance hypotheses are identical to
those used in model fitting. That is, a model in which certain parameters
are constrained to be equal across groups is compared with a less restric-
tive model in which these same parameters are free to take on any value.
For example, the hypothesis of an invariant pattern of factor loadings (A)
can be tested by constraining all corresponding lambda parameters to be
equal across groups, and then comparing this model with one in which
the number of factors and pattern of loadings are invariant, but not con-
strained equal (i.e., the summed x> across groups). If the difference in x*
(Ax?) is not significant, the hypothesis of an invariant pattern of loadings
is considered tenable.

2. Tests for Invariance Related to Self-Concept

In our first two-group application, then, we begin by establishing a well-
fitting baseline model separately for males and females. But first, let’s
examine the model to be tested.

2.1. The Hypothesized Model

The hypothesized model in the present application is identical to the one
examined in Chapter 3 (see Tables 3.2 and 3.3); as such, the API has been
deleted as one measure of ASC. To recapitulate, this model hypothesizes
a priori that: SC responses can be explained by four factors (general SC,
academic SC, English SC, and mathematics SC); each subscale measure
has a nonzero loading on the SC factor that it is designed to measure
(i.e., target loading) and a zero loading on all other factors (i.e., nontarget
loadings); the four SC factors, consistent with the theory (see e.g., Byrne
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& Shavelson, 1986), are correlated; and error/uniqueness terms for each
of the measures are uncorrelated. To refresh our memory of the model to
be tested here, let’s review Table 3.3 which summarizes the pattern of
parameters to be estimated. Recall that the As, ¢s, and 6;s represent the
parameters to be estimated and the Os and 1s are fixed a priori; and for
purposes of identification, the first of each congeneric set of SC measures
is fixed to 1.0, each nontarget loading is fixed to 0.0. A schematic presen-
tation of the model to be tested is shown in Figure 6.1.

8 | SDAGSC |\ 3,
5 A GSC
2— APIGSC :
>‘31 !

83— SESGSC

921
8,——{ SDQASC
>\42
ASC
Aso £ 31
85— SCAASC s
41
¢32
86 SDQESC f_ » 942
63
A E
8,;—— APIESC L ESC
Ag3 3
8g SCAESC
Pa3
89— SDQMSC N
94
A
8,0——| APIMSC 10.4 M§C
4
8,;—| scamsc B~ Mi.a

FIGURE 6.1. Hypothesized Four-Factor Model of Self-Concept.
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2.2. The Baseline Models

Using the procedures outlined in Chapter 3, alternative models were se-
quentially respecified and reestimated until a well-fitting model, both sta-
tistically and substantively, was found for each sex. These baseline mod-
els demonstrate a satisfactory fit to the data for both males (x*/df = 1.97;
BBI = 0.98) and females (x*/df = 2.27; BBI = 0.98)."

In fitting the baseline model for each sex, a substantial drop in x*> was
found when the English SC subscale of the SDQ was free to load on gen-
eral SC. Furthermore, for males only, the mathematics SC subscale of
the SDQ was allowed to load on the English SC factor.? Finally, error/
uniquenesses between subscales of the same measuring instrument were
allowed to covary, resulting in five error covariances for males and three
for females. These baseline models are shown schematically in Figure
6.2.

3. LISREL Input for Multigroup Analyses

As noted earlier, when the analyses focus on multigroup comparisons
with constraints between the groups (i.e., certain parameters are con-
strained equal), it is imperative that the parameters be estimated simulta-
neously.” To this end, in the present application, we now combine our
male and female files into one, such that the specifications for each group
are stacked one after the other (i.e., the model specifications for males
are presented first, followed by the model specifications for females) and
these specifications are consistent with the established baseline model for
each sex (see Figure 6.2).

3.1. The DA Card

A multiple group specification requires three modifications to the basic
setup as it relates to single-group analyses; these are as follows.

'As noted in Byrne & Shavelson (1987), several alternative models were estimated
beyond this point yielding statistically better fitting models for both males (x*/df
= 1.33; BBI = 0.99) and females (x*/df = 1.58; BBI = 0.99). These models,
however, allowed for error covariances between subscales of different measuring
instruments. Clearly, such covariation does not make sense psychometrically.
These models were thus rejected in favor of the more substantively sound baseline
models presented here.

*From a substantive point of view, this factor loading is difficult to explain. How-
ever, as noted in our summary of the study, we strongly suspect that this effect
will disappear upon replication.

*KM was specified in estimating model parameters for males and females. Thus,
the KM specification was changed to CM in testing for invariance across sex. In
order for the analyses to be based on the covariance matrix, the standard devia-
tions must be added below the correlation data matrix.
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1. The number of groups (NG) must be specified for the first group. In
the present case, it would be specified as NG =2.

2. The matrix to be analyzed must be the covariance matrix (CM), rather
than the correlation matrix (KM) as demonstrated for the single-group
analyses (see e.g., Table 3.2); this specification is made for the first
group only and reads MA =CM.

3. The only information required on the DA card of the second group
relates to the number of observations expected (N =420).

These stacked specifications for males and females, based on their
baseline models, are presented in Table 6.1.

TABLE 6.1. LISREL Input for the Simultaneous Estimation of Male and Female
Baseline Models
TESTING INVARIANCE = GRP1=MALES = “LISRELMF™ FILE

DA NG=2 NI=1E NO=412 MA=CM
LA

P

*SDQGSC® *"SDQASC® °®SDQESCY *SDAMSC®* °*APIGSC® *SESGSC®* °"APIASC® ®*SCAASC®
SAPIESC® °*S5CAESC® °*APIMSC® *SCAMSC® *GPA® *ENGY *MATH®

KM SY

(15F4.3)

1000

254 703 337 591 312 313 5871000

166 429 724 143 264 216 445 3641000

104 411 506 142 199 163 373 551 63010000

247 601 202 880 288 309 530 621 290 1991000

208 526 127 827 253 231 473 676 155 234 8081000

035 S17 117 481 067 080 374 687 121 340 434 5241000
-020 410 1538 272 003 062 297 507 215 492 261 294 7861000

940 378 060 609 076 074 295 525 077 172 550 649 746 5331000

x

760410 52.978 55621 49223 78,223 32.022 71,175 28,359 57.918 26,820
43.398 264243 65.546 62.522 594922

5

=

132856 13.382 10,017 15.977 9.442 40889 2.999 5.943 11,099 5,929 11.762
7873 11.232 12.664 16.878

SELECTION

1 5356 238 3 910 4 11 12/

MO NX=11 NK=4 LX=FU PH=SY TO=SY.FI

FR LX(201) LX(391) LX(S5,2) LX{(7+3) LX(8,3) LX(10,4) LX(11,4)

FR LX(891) LX(3:3)

2) TD(3,3) TD(454) TD(S5,5) TD(6+6) TD(7,7) TD(8B.8)

0
) 11,8) TD(7,2)
( LX{9s4)
( LX(7e3) LX{Bs3) LX(1004) LX(11s4)

“n
kel
-
<
-~
=
.
oOs.
-

Fres=
e @ o=
O -
——~0

Lol

)
4
3

v
KX N -

T p =
~OO~N

PH(42) PH(4,3)

)
) TD(9+9) TD(10,10) TD(11,11)
+3) TD(7,2)

© (uteo D OVIN e o =y

I Uiv o pmwes s 8e OO
e Ll N L T )
war Ve ewwr

-y

>
TESTING EJUA
DA NJI=420
LA
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"

*S50U65CY "S50QASC® *SDUESC? *3DAMSC® AP IGSC® *SESGSC?® ?*APIASC® °*SCAASCe
PAPISSC® *5CAESC® "APIMSC® *SCAMSC® *GPAY *ENG® *MATH®
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TABLE 6.1. Continued
SY

{15F4.3)

1000

2931000

278 3771000

109 379-0631000

656 300 211 1291000

825 331 311 160 6771000

519 569 329 321 555 5661000

191 659 336 378 137 263 4951000

146 400 677-042 185 211 397 4091000

168 474 554 026 140 233 353 626 6571000

123 406-026 857 186 185 388 408 071 049100C

079 362-039 822 082 124 320 509-026 080 8061000

014 487 165 394 027 096 345 675 115 344 316 4571000

022 451 252 257 058 083 305 557 269 554 175 250 7791000
~056 272-006 550-033-001 216 439-059 073 475 662 732 4641000
ME
had

752352 57621 57931 44421 75.338 30.731 74,150 28.886 63,167 28.867

9.679 68,971 63.400

43.767 24.243 6
5D

=
14.524 11.014 9.479 16.3#7 B808353 50019 84656 4,873 10,701 5.319 11,073
7.087 9.323 11,655 14.643

SELECTION

1 562839 10°4 11 12/

LX=FU PH=SY TD=SY»sF
LX{2s1) LX(3,1) LX(S,E) LX{T763) LX(Be3) LX{10s4) LX(11s4)

LX(6s1)

TD({1s1) TO(2s2) TD(353) TD(45s4) TD(5,5) TD(6:6) TO(7,7) TO(8+8)
TD(9+9) TD(10510) TD(i1,11)

TO(8+5) TD(10»7) TD(L1s5)

30,0 LX(1el) LX{4:2) LX(66s3) LX(9s%)

1.0 PH(1,s1) PH(Zs2) FH(3,3) PH(4:4)

205 PH(2s1) PH(3s1) PH(4,1) PH(3,2)

=a01 PH(4,3)

4000 TD(1ls1l) TDL242) TOL4s4) TD(6+6) TD(7o7) TD(9,9)
10,0 TD(35+5) TD(8,8) TO(11s11) TD(10,7)

13.0 TO(1C»10)

5;0 TD(85,5) TD(11,5) TD(3,3)

N

3.2. The MO Card

Before we can proceed further in testing for invariance, we must learn
additional LISREL specification language, which is needed for the MO
card; this information is now summarized.

1. The specification of any matrix element in a current group, contains
only two indices within parentheses (e.g., LX(2,1). To refer to a matrix
element in some other group, however, there must be three indices within
parentheses, where the first number refers to the number of the group.
For example, the specification of L.X(2,2,1) refers to the element LX(2,1)
in the second group; LX(3,2,1), to the element LX(2,1) for the third
group, and so on.

2. In defining equality constraints between groups, the parameter to be
constrained is specified as free in the first group and as equated (EQ) to
the first group for each of the other groups. For example, in testing for
the invariance of LX(2,1) across three groups, the specification would be:

In group 1: FR LX(2,1).

In group 2: EQ LX(1,2,1) LX(2,1).
In group 3: EQ LX(1,2,1) LX(2,1).
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According to this specification, LX(2,1) will be freely estimated for
group 1 only; for groups 2 and 3, the value of LX(2,1) will be constrained
equal to the value obtained for group 1.

3. To constrain an entire matrix (i.e., all elements in the matrix) invari-
ant across groups, the matrix of interest can itself be specified as invariant
(IN) on the MO card. That is to say, to constrain LX in group 2 equal to
LX for group 1, we would specify LX=IN. It is worth noting, however,
that this specification at the LX matrix level is identical to a specification
wherein each element in the LX matrix for group 2 is specified as equiva-
lent (EQ) to each element in the LX matrix for group 1 (as explained
earlier). For example, in the case of our present data, the specification
LX=1IN is equivalent to the following specification with respect to indi-
vidual elements of LX:

EQ LX(1,1,1) LX(1,1)
EiQ LX(1,2,1) LX(2,1)

EQ LX(1,11,4) LX(11,4)

4. Additionally, if start values were included for the initial baseline
model input, they may need to be increased in order to make them com-
patible with covariance, rather than correlation values. In the case of the
present data, for example, the start values for the fixed A\s were changed
from 1.00 to 30.00, and the free \s from 0.90 to 15.0.

5. Finally, the following matrix specifications can be described on the
MO card:

SP—indicates that the matrix has the same pattern of fixed and free ele-
ments as the corresponding matrix in the previous group.

SS—indicates that the matrix will be given the same starting values as
the corresponding matrix in the previous group.

PS—indicates that the same pattern and starting values will be used as in
the corresponding matrix of the previous group.

3.3. The OU Card

Specification on this card remains consistent with other models described
in Section II. In other words, whether or not the analyses are based on
single or multiple groups has no bearing on the requested output.

4. Testing Hypotheses Related to Factorial Invariance

Now we are ready to test the series of hypotheses related to the invari-
ance of SC measurements and structure across gender. Let’s proceed by
examining, one at a time, the model specification input and results associ-
ated with each of these hypotheses. For purposes of demonstration, the
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omnibus test of invariant variance-covariance matrices will be conducted.
However, you are urged to refer to the earlier discussion regarding the
rationale and problems associated with this test.

4.1. Hypothesis 1 (H,: 2y = 2p)

The first hypothesis to be tested is the global one that relates to the equiv-
alence of the variance-covariance matrices across sex. As noted by Jore-
skog (1971a), one hopes to be able to reject this hypothesis in order to
argue that the covariance matrices for males and females are significantly
different. The input for this model, related only to the MO card (all other
input remains the same) is as follows:

Males: MO NX=11 NK=11LX=ID TD=ZE
Females: MO PH =IN*

For males, the model specified here considers each measure to repre-
sent one factor (i.e., an 11-factor model), with the factor loading matrix
specified as an identity matrix (i.e., each measure has exactly one fixed
loading for exactly one factor), and the error variance-covariance matrix,
a zero matrix (i.e., a null matrix). The model specification for females
is exactly the same, with the added restriction that the factor variance-
covariance matrix is invariant.

The hypothesis of invariant covariance matrices was rejected (x* (66)
= 138.80, p<<0.001). These results imply that for adolescent males and
females, SC structure differs with respect to: the number of factors under-
lying SC, the pattern of factor loadings (i.e., SC measurements of the SC
factors under study), and/or the variance of the SC factors and/or their
covariances (i.e., relations among the SC factors under study). We pro-
ceed now to test hypotheses related to each of these possibilities by test-
ing a series of increasingly restrictive models.

4.2. Hypothesis 2 (Hy:A yx -4 = Apx - 4)

The second hypothesis to be tested is that the number of factors underly-
ing the SC structure, as postulated in Figure 6.1, is invariant across sex
(i.e., a four-factor structure). The decision to reject or not to reject this
hypothesis is based on the overall goodness-of-fit between the simultane-
ous model and the data; a satisfactory fit arguing for a factor structure
that includes the same number of factors in each group. Unlike single-
group analyses, multigroup analyses yield only one overall x* value, albeit
separate GFI and RMR measures for each group. Since the x* values are

“Where model specifications for the second and all subsequent groups are the
same as the first group, these specifications need not be included in the MO card
(i.e., for females, NX=11 NK=11 LX=ID TD=ZE).
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summative across groups, the value obtained in the multigroup specifica-
tion should equal the sum of x* values obtained for the single-group analy-
ses. The model specification input for testing this hypothesis, then, is
identical to that presented in Table 6.1. As such, parameter specification
is consistent with the baseline model for each group; the only difference
is the simultaneous, rather than the separate, estimation of parameters.

The results of this analysis yielded a x> (65) = 138.26; this value, of
course, is equal to the sum of the separate goodness-of-fit indices for
males (x* (31) = 60.96) and females (x* (34) = 77.30). As such, the four-
factor solution is considered to represent a substantively reasonable fit to
the data (x*/df = 2.13; BBI = 0.98). As a case in point regarding the
sensitivity of x° to trivial differences between comparative models, it is
worthwhile to note that on the basis of statistical criteria, this model
would be rejected (p<<0.001). Interestingly, McGaw and Joreskog (1971),
presented with similar findings, argued for an invariant number of factors
(i.e., nonrejection of Hypothesis 2) based on a Tucker-Lewis index equal
to 0.94.° Given the substantially poorer model fit in their data, it seems
justifiable, and indeed reasonable here, to conclude that a four-factor
structure underlies the data in the present application.

Nonetheless, while these results suggest that for both males and fe-
males, the data are fairly well described by general SC, academic SC,
English SC, and mathematics SC, they do not necessarily imply that the
actual factor loadings are the same across sex. Thus, the hypothesis of
an invariant pattern of factor loadings remains to be tested; we turn now
to this issue.

4.3. Hypothesis 3 (H,: Ay, = Ap)

The hypothesis to be tested here argues that all measurement scaling units
(i.e., the factor loadings) for each SC factor, as specified in Figure 6.2 are
equivalent across sex (except for the additional cross-loading for males
[Ags]). In other words, the pattern of factor loadings is invariant. A more
explicit expansion of this hypothesis is shown in Figure 6.3.

The testing of Hypothesis 3, as well as subsequent hypotheses related
to invariance, is identical to those used in the model-fitting procedures
demonstrated in Chapters 3 and 4. That is, a model ‘s estimated in which
the x* parameters are constrained to be equal across gender; the resulting
goodness-of-fit is then compared with that of a less restrictive model in
which the same parameters are free to take on any value. The tenability
of the hypothesis rests on the statistical significance of the Ax’, between
the two models.

In specifying this model, the input for the female group only is of inter-

As with the BBI, the Tucker-Lewis Index ranges from 0.0 to 1.00, values closest
to 1.00 representing the best fit to the data.
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A, A,
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FIGURE 6.3. Hypothesized Invariance of the Pattern of Factor Loadings Across
Gender.

est. This is because in our stacked data setup, the female data are pre-
sented in the second group; by convention, the second group is con-
strained equal to the first group (i.e., model specifications for males
remain consistent with those presented in Table 6.1). Since there is one
factor loading that is already known to be noninvariant across the two
groups (Ay3), we cannot constrain the entire A matrix invariant by using
the specification LX =IN. We thus specify a model that constrains all s
except A,;. The LISREL input, for females only, is presented in Table
6.2.

To recapitulate, the hypothesis of an invariant pattern of factor load-
ings was tested by constraining all A parameters except Ay; to be equal,
and then comparing this model (Model 2) with Model 1 in which only the
number of factors was held invariant. The fit of our constrained model
yielded a x* (73) = 145.37. Since the difference in x> was not significant
(Ax* (8) = 7.11), the hypothesis of an invariant pattern of factor loadings
was considered tenable. If, however, this hypothesis had been rejected,
the next step would have been to proceed by testing, independently, the
invariance of each factor loading (A) in the factor-loading matrix (A). (This
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TABLE 6.2. LISREL Input for Females: Testing for the Invariance of Factor
Loadings (i.e., self-concept measurements)
TESTING caJALITY - FoMAL_bS
DA NU=320
uA
*5DQu3CY TSIUASCT 5005500 fLTUMoL ¢
CAPLIC3C® 95 CAESCY TAP[MSIY TS CAMSLY 0
KM SY
(L5F4+3)

5500 PIESGSC® TAPLIASI® PSCAAIC?
*UTENGY CMATH!

278 3771002
109 379-0631000

656 300 211 1291000

825 331 311 160 67710073

519 569 323 321 555 S06l00y

191 659 335 378 127 263 4901000

145 400 577-0642 185 211 327 409100v

168 474 9554 026 140 233 353 ocb 5571000

123 490-020 857 186 185 380 408 071 0491000

Q79 362-237 822 (82 124 323 2UI=026 080 8361000

014 437 1535 394 027 096 345 6715 115 344 316 4571000

022 431 252 257 058 033 300 LS57 269 554 17165 250 7791000
~0906 272-006 550-033-001 16 439-059 073 475 652 732 4541030

752332 37-021 357, 951 44«3 21 75.335 30,731 74.150 28.886 03. 107 28.807
43,767 24.243 69,679 68,271 53.4

E1

14624 11014 9479 160 247 30503 5:017 825656 4,873 1U-701 0.3139 11,073
7,087 9,328 11,655 14,643

SELECTION

1 56 28 3 910 4 11 L2/

MO LA=FU PA=SY TO=3YsF1
FRLX(2.:1) L s1) LX
FR LX(6s,1)
FR To(1,1)
FROTU(I:92)
FR TD(3+H)
E£Q LX{1s2»
23 LA(1s3s
Ed LX(195s
EQ LX(1e7»
@ LX (1.8

i
-~

(763) LX(83) LX(10e4) LX{11,%)
G94) TD(S5s5) TI(696) TO(T+7) Tol(Bdsb)

Frrrreaas o~
e XXX XK X ey
AN K e~ OO
-~

22} X(0s3) LX{(9eb)
2) Pid(3+3) PH(G4)
1) Pi({4sl) PH(3:2)

G et O N e e e O
e Pwe 0w ey

vT
Qe TIMNOCm~@E~NOUNeeN

O A~ Xs mie sees e

—~

2+2) TDl4s4) TO(He6) T
8983) TD(11s11) TD(10Cs7
1

20) TOL{ 3, 3)

D(T»7) TD(Is9)
)

DiCYs & » pps @
- Ul sl e e
-

-
-
-

technique is demonstrated next with respect to the SC factor variance-
covariance matrix.)

4.4. Hypothesis 4 (H,: &y, = Dp)

The hypothesis to be tested here bears on the structure of the SC con-
struct by focusing on the invariance of the SC factor variance-covariance
matrix across sex. Specifically, it argues for the group equivalence of the
variance associated with each SC facet and relations (i.e., covariances)
among the SC facets. As noted earlier, hypotheses related to invariance
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TABLE 6.3. LISREL Input for Females: Testing for the Invariance of the Factor
Variance/Covariance Matrices (i.e., self-concept structure)
TESTING EQUALITY - FEMAL.S

DA NJI=420
LA

*53DQG5CT f50QA5CT 5D ST '50AM5CT TAPIGSCT *SELL5C° PAPLALIT 'LLAASCY
PAPIESC?® *3CAESC® °CAPIMGSI® °*LCAMLU? *GPA' *ENG® °*MATH®
KM S5Y
(15F4.3)
1000
2931000
278 3771000
109 379-9631000
656 300 211 1291000
325 331 311 160 6771004
519 569 327 321 595 5646100
191 659 336 378 263 49451004
140 400 677-042 211 397 4091G00
168 474 534 026 233 353 520 1571000
123 405-025 857 185 333 408 071 64921000
079 362-0339 322 082 124 320 509-026 080 BI610I0
14 487 165 334 027 096 345 H75 115 344 31€ 4571
022 451 252 257 058 083 305 557 269 554 175 250
-056 272-005 550-033-001 210 439-059 073 475 652
Me

- s e

@& m
oo

00
7791C00
732 404150

%5.352 57,021 57931 4% o42: 750338 30« 731 74.150 23.4386 03.107 c8.807
43.767 242243 69:679 68.771 53,400

30

14524 114014 90479 160347 B3.6833 50019 832656 4,873 1iJd701 3319 1i.073
7:087 2.328 11.655 14.043

SELECTION

1 96 28 3910 4 11 12/

MU LX=FU PH=IN TO=S5Y»FI

FR LX(2s1) wX(351) LX(552) LA(7:3) LX{853) LX(1Gs4) LX{1llss)
FRLAX(6e1)

FRTDO(1s1) TC(2e2) TD(3:3) TO(ds+) TD(5s3) TD(06) TO(7+7) Tolosr)
FR OTO(I99) TO(1010) TO( 11011

FR TO(8,5) TO{10.7) TD(11l55)

e LA{192s1) LX(251)

£ LA(19391) LX(3e1)

2 LX(193s2) LX{5:2)

iiQ LX({1e7s3) LX(723)

£ LX(1s393) LX(8+3)

Ed LX(151094) LX(10s%)

Cd LX{1sl1lv4) LX(11s4)

EQ LX(12691) LX(6s1)

ST 300 LX{1ol) LX(4:2) _X{(5,3) LX(9:4)

ST 400 TD(1s1) TD(2e2) TO(4»4) 1D(0s6) [D(T7s7) TO(Is37)
5T 100 TO(55) TD(8,8) 1D(L1-11) TO(10,7)

ST 180 TD(10s10)

3T 5.0 TD(8,5) TO(11,5) TD(3,3)

UU N5

involve increasingly restrictive models; as such, the model to be tested
here (Model 3) is more restrictive than Model 2. In addition to the specifi-
cation of constraints between As, Model 3 also includes the restriction
that the entire factor variance-covariance matrix (®) be constrained in-
variant across sex (PH=1IN). The LISREL input for Model 3, again for
females only, is presented in Table 6.3.

The fit of Model 3 with the data yielded a x* (83) = 195.30. Since the
difference in x* between this model and Model 2 was statistically signifi-
cant (Ax* (10) = 49.93, p<0.001), the hypothesis of equivalent SC struc-
ture was rejected. The strategy at this point was to isolate those compo-
nents of SC structure that were noninvariant across sex. To determine
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TABLE 6.4. LISREL Input for Females: Testing for the Invariance of Individual
Factor Variance/Covariance Parameters

TESTING EQUALITY - FEMALES
DA NO=420
LA
=z
*3DUGSC® 'SOQASC® °SDQESC® *SDEMSC® APISSC® °*SESGSC®! *APIASC® °®SCAASC?
*APIcSC® *SCAESC® TAPIMSI?® *SCAMSC® °GPA® ENGY °*MATH®
KM 5Y
(15F4.3)
1000
2931003
278 3771000
109 379-0631000
856 330 211 1291030
3825 331 311 160 67710090
519 569 323 321 5%5 5661000
191 657 335 378 137 263 4951000
146 400 577-042 185 211 3757 40910Q0
168 474 554 026 140 303 626 6571000
123 406-026 857 186 338 408 071 0491000
079 362-039 822 082 320 509-026 080 8061000
214 487 165 394 027 345 675 115 344 316 4671000
222 451 202 237 058 305 557 269 554 175 25C 7791000
~-056 272-006 550-033-0 216 439-059 073 475 662 732 40641000

QO™
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2
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8
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this information, it was necessary to test, independently, the invariance
of each parameter in the phi matrix. As such, Model 4 was specified with
the variance of general SC (¢,,) constrained equal [EQ PH(1,1,1)
PH(1,1)], in addition to the parameters known to be invariant across the
groups. The LISREL input, for females only, is presented in Table 6.4.

Since the difference in fit between this model (Model 4) and Model 2,
in which only the factor loadings were held invariant, was not significant
(Ax* (1) = 1.15), the hypothesis of equivalent variance in general SC was
considered tenable. In like manner, a series of subsequent models were
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TABLE 6.5. Simultaneous Tests for the Invariance of Self-Concept Measure-
ments and Structure

Competing models X df Ax df  x¥df  BBI
0 Null model 6,465.41 110 — — — 97
1 Number of factors invariant 138.26 65 — — 2.13 .98
2 Number of factors and pattern of 145.37 73 7.11 8 1.99 .98
loadings invariant®
3 Model 2 with all latent variances 195.30 83  49.93” 10 235 97

and covariances invariant

4 Model 2 with latent construct
parameters made
independently invariant

Variances

(a) General SC 146.52 74 1.15 1 1.98 .98
(b) Academic SC 161.72 74 16.35™ 1 2.19 .98
(c) English SC 147.17 74 1.80 1 1.99 .98
(d) Mathematics SC 146.16 74 .79 1 1.98 .98
Covariances

(e) Academic/general SC 148.55 74 3.18 1 2.01 .98
(0 English/general SC 145.37 74 0.00 1 1.96 .98
(g) Mathematics/general SC 149.54 74 4.17 1 2.02 .98
(h) English/academic SC 146.89 74 1.52 1 1.99 .98
(i) Mathematics/academic SC 167.39 74 22.02" 1 2.26 .97
(j) Mathematics/English SC 157.56 74 12.197 1 2.13 .98

‘p<0.05 “p<0.001

?All lambda parameters invariant except A;.

From Byrne and Shavelson (1987), “Adolescent Self-concept: Testing the Assumption of
Equivalent Structure Across Gender” in American Educational Research Journal, 24(3),
365-385. Copyright 1987 by American Educational Research Association. Reprinted with
permission.

specified in which each of the remaining parameters in the ® matrix was
constrained equal across sex. Overall, tests of hypotheses related to the
equivalence of SC structure revealed significant gender differences in the
variance of academic SC, and with respect to relations between: mathe-
matics SC and general SC, mathematics SC and academic SC, and mathe-
matics SC and English SC. A summary of the testing of all hypotheses
related to the invariance of SC measurements and structure across gender
is presented in Table 6.5.

Given the differences between males and females illustrated in Table
6.5, invariance of the error variance-covariance matrices was not for-
mally tested. Although J6reskog (1971a) suggested that the hypothesis of
an invariant variance-covariance matrix (®) be tested conditional on the
findings of an invariant number of factors, factor-loading pattern, and er-
ror variances, this restriction is excessively stringent and not always nec-
essary (Muthén, personal communication, Jan. 1986; Alwin & Jackson,
1980).
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5. Summary

This chapter demonstrated how to test hypotheses related to factorial in-
variance across groups. Specifically, procedures were demonstrated that
tested for the gender invariance of a multidimensional adolescent SC
structure as measured by multiple measuring instruments. The first step
was to fit a hypothesized four-factor model of SC separately for males
and females. We next combined the two baseline models and proceeded
to test hypotheses related to the invariance of SC measures (i.e., factor
loadings) and SC structure (i.e., factor variances and covariances). Fi-
nally, procedures used in testing for and with partial measurement invari-
ance were illustrated.
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7

Testing for Item Invariance
of a Measuring Instrument

In this second multigroup application, our attention focuses on invariance
as it relates to a single measuring instrument, the Self Description Ques-
tionnaire (SDQIII; Marsh & O’Neill, 1984). In this chapter we explore
the factorial equivalency of the SDQIII across two academically tracked
(low and high) groups of high school students. (For a more extensive dis-
cussion of academic tracking as it relates to this data base, see Byrne,
1988a; for details of the study related to this application, see Byrne,
1988c¢.)

Typically, in testing for the factorial invariance of a single measuring
instrument, the researcher is primarily interested in three psychometric
issues: that the items comprising each subscale are factorially valid and
equivalent across groups, that the factor covariances (i.e., relations
among the underlying construct dimensions) are equivalent across
groups, and that the subscale items are equally reliable across groups.

This chapter addresses each of these issues. Specifically, it illustrates
the testing of hypotheses bearing on the equivalency of the SDQIII across
academic track; consistent with the procedures outlined in Chapter 4, all
analyses are based on item-pairs. The reader is encouraged to refer to
Chapter 4 for a review of other details regarding a description of the
SDQIII, the hypothesized model, and procedures for establishing a base-
line model for each group.

1. Tests for Invariance Related to the SDQIII

1.1. The Hypothesized Model

As in Chapter 4, all analyses were based on item-pairs, rather than on
single items. Likewise, the CFA model under study hypothesized a priori
that: responses to the SDQIII could be explained by four factors (general
SC, academic SC, English SC, and mathematics SC), each item-pair
would have a nonzero loading on the SC factor it was designed to measure
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(i.e., the target factor) and zero loadings on all other factors (i.e., nontar-
get factors), the four factors would be correlated, and the uniquenesses
for the item-pair variables would be uncorrelated. This model was pre-
sented schematically in Figure 4.1, and the pattern of parameters to be
estimated was detailed in Table 4.1.

1.2. The Baseline Models

Although for both tracks the hypothesized four-factor model represented
a psychometrically reasonable fit to the data (low track, x/df = 2.32,
BBI = 0.90; high track, x*/df = 4.40, BBI = 0.91), the fit, based solely
on statistical criteria, was less than adequate (low track, x{s; = 425.18,
p<0.001; high track x;,s;, = 805.45, p<0.001).

To investigate the misfit in the model, a sensitivity analysis was con-
ducted as outlined in Chapter 4. As such, model fitting for each track was
continued beyond the initially fitted models. Several additional modifica-
tions that included both correlated uniquenesses and secondary loadings
(item-pair loadings on nontarget factors), resulted in a statistically better
fitting model for both the low track x;,s,, = 192.48, p = 0.06; BBI = 0.94)
and the high track (x4, = 171.52,p = 0.10; BBI = 0.98). Given the
probability of method effects (see Byrne, 1988b; Gerbing & Anderson,
1984) and the moderate correlations among the four SC factors under
study, these parameters were not unexpected.

Based on the following considerations, however, these final models
were rejected in favor of the more parsimonious initial models: the
uniqueness covariance estimates, while statistically significant, were rela-
tively minor (low track X = 0.05; high track, X = 0.04); the estimated
secondary factor loadings, while statistically significant, were also rela-
tively minor (low track, X = 0.04; high track, X = 0.03); the estimated
factor loading and factor variance-covariance estimates in the final model
correlated 0.93 and 0.99, respectively, for the low track, and 0.94 and
0.97, respectively, for the high track, with those in the initially hypothe-
sized model (see Byrne et al., 1989; Tanaka & Huba, 1984), these results
substantiating the stability of the initial models; although each of the
model respecifications yielded a statistically significant improvement in
model fit, these increments based on the BBI could be considered of little
practical importance (see also, Marsh & Hocevar, 1985); the sensitivity
of the x* likelihood ratio test with large samples is now widely known (see
Bentler & Bonett, 1980; Marsh & Hocevar, 1985); and given the explor-
atory nature of these supplementary analyses, and thus the risk of capital-
ization on chance factors (see MacCallum, 1986), the final model esti-
mates were considered dubious. For these reasons, then, the initial model
for each track was used as the baseline model in tests of invariance; these
models are presented schematically in Figure 7.1.
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TABLE 7.1. LISREL Specification Input for Model 1 (Both Tracks): Testing for
an Invariant Number of Factors

CFA of the SDA — Simul taneous Run of Baseline Models — Grp 1 = Lo Track
82 NG=2 NI=21 NO=285 MA=CM

*
*GSC1? *GSC2* '65C3* *GSCA4* *GSCS® *GSC6e* *ASCL* *ASC2* *ASC3® *ASC4A?®
*ASCS® *ESC1* *ESC2® *ESC3? 'ESC4* *ESCS® *MSC1? *MSC2?' *MSC3I® *MSC4?

20 17 17 22 20 27 38 75100

25 26 23 27 21 27 59 39 65100

22 23 15 22 16 29 43 52 60 61100

17 15 12 11 19 17 07 13 17 20 100

16 16 14 25 22 06 14 15 14 21 19 29

13 22 17 16 21 20 03 10 10 22 29 38 34

19 12 21 15 21 18 08 14 16 28 26 34 39 37100

15 13 09 29 16 16-01 05 09 12 12 33

13 17 17 13 14 01 27 21 20 27 17-06—-05-02 08—

15 15 16 14 12 04 12 08 18 22 16-01-02-01 09-0O

25 17 20 15 19 08 20 24 29 28 27-03 04-03 07-05 39 73100

13 11 11 08 06 11 26 24 27 30 32-09-05-06 06—-16 49 &7 70100
Héb 14 16 05 01 14 35 28 35 43 30 01 01-00 17-08 53 57 52 64100
*
6.14 6.52 5.96 6.51 .56 6.29 4.21 5.23 5.00 5.28 5.12 5.23 5.49
2671 S5.31 6.67 4.45 4.18 4.65 4.56 3.20
*

1.42 1.25 1.36 1.33 1.38 1.33 1.71 1.45 1.56 1.47 1.50 1.70 1.52
1.41 1.46 1.82 1.71 1.70 1.70 1.54 1.60
MD NX=21 NK=4 LX=FU PH=SY TD=SY,FI
FR LX(2,1) LX(3;1) LX(451) LX(551) LX(&651) LX(B,2) LX(952) LX(10,2)
FR LX(1152) LX(13,3) LX(14,3) LX(15,3) LX(16,3) LX(lB,4) LX(19,4)
FR LX(20,4) LX(21,4)
FR TD(1,1) TD(2,2) TD(3,3) TD(4,4) TD(5,5) TD(&,6) TD(7,7) TD(8B,8)
FR TD(92,9) TD(10,10) TD(11,11) TD(12,12) TD(13,13) TD(14,14) TD(15,13)
FR TD(16516) TD(17,17) TD(18,18) TD(19,19 TD(20,20) TD(21,21)
ST 1.0 LX(151) LX(7,2) LX(12:3) LX(17,4)
ST .7 LX(251) LX(3,1) LX(4,1) LX(5,1) LX(651) LX(B8,2) LX(F52) LX(10,2)
ST .7 LX(11,2) LX(13,3) LX(14,3) LX(15,3) LX(16,3) LX(18,4) LX(19,4)
ST .7 LX(20,4) LX(21,4)
ST .5 PH(1,1) PH(2,2) PH(Z,3) PH(4,4)
ST .3 PH(25;1) PH(3,1) PH(3,2) PH(4,;1) PH(4:2) PH(4,3)
ST .2 TD(1,1) TD(2,2) TD(3,3) TD(4,4) TD(5:5) TD(6,6) TD(7,7) TD(8,8)
ST .2 TD(9,9) TD(10,10) TD(11,11) TD(12,12) TD(13,13) TD(14,14) TD(15,15
ga ﬁ% TD(16516) TD(17,17) TD(18,18) TD(19,19 TD(20,20) TD(21,21)
Simul taneous Run for Baseline Models - Grp 2 = Hi Track
Eg ND=613

*
*GSC1? 2GSC2* *GSC3IY *GSC4? '6SCS? *GSCE* *ASCL* YASC2* YASC3E' *ASCA?
:aggg: *ESC1* *ESC2' 'ESC3® *ESC4* *ESCS? *MSC1* *MSC2* *MSC3* *MSC4?

15 04 14 09 10 0B 14 22 24 26 23100
13 11 13 14 14 07 18 29 28 33 23 41100

25 18 31 21 25 22 12 24 30 35 28 42 44100

I3 24 32 21 27 23 19 27 30 42 3I2 45 47 42100

04 01 03 10 08 05 08 19 19 21 21 19 35 24 24100

14 11 09 17 12 14 34 39 34 36 3606 02-02 08 11100

11 12 12 13 11 14 18 22 25 26 35-15-06-08 02 02 71100

11 11 11 10 11 15 21 3I2 35 35 42-10 01-00 06 OB 75 81100

12 11 11 15 08 15 25 34 39 40 47-05 05 05 11 08 62 78 82100

08 07 07 15 09 13 28 33 32 34 41-06 04 02 10 05 &7 72 72 74100
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TABLE 7.1. Continued

6.40 5.96 6.47 6£.55 6£.17 4.66 5.96 5.90 6.02 6.17 5.52
] S 4.64 5.29 5.19 4.13

1.30 1.39 1.36 1.48 1.39 1.58 1.33 1.38 1.30 1.40 1.71

1.31 1.43 1.52 1.88 2.05 1.86 1.78 1.82

=21 NK=4 LX=FU PH=8Y TD=8Y,FI

(251) LX(351) LX(4,1) LX(551) LX(651) LX(B52) LX(952) LX(10,2)
(11,2) LX(13,3) LX(14,3) LX(15:53) LX(16,3) LX(1854) LX(19,4)
(20,4) LX(21,4)

(1,1) TD(2,2) TD(3,3) TD(4,4) TD(5,5) TD(b,6) TD(7,7) TD(B,8
(2,9) TD(10,10) TD(11,11) TD(12,12) TD(13,13) TD(14,14) TD(1
(16,16) TD(17,17) TD(18,18) TD(19,19 TD(20,20) TD(21,21)

O LX(151) LX(7,2) LX(12,3) LX(1754)

LX(25,1) LX(3,1) LX(4,51) LX(5,1) LX(651) LX(8,2) LX(9,2) LX(10,
LX(11,2) LX(13,3) LX(14,3) LX(15,3) LX(16,3) LX(18,4) LX(19,4)
LX(20,4) LX(21,4)

PH(151) PH(2,2) PH(3:3) PH(4,4)

PH(2,1) PH(3,1) PH(3,2) FH(4,1) PH(4,2) PH(4,3)

TD(1,1) TD(2,2) TD(3,3) TD(454) TD(5,5) TD(6s6) TD(7,7) TD(8,8
TD(9,9) TD(10,10) TD(11,11) TD(12,12) TD(13,13) TD(14,14) TD(1
TD(146,16) TD(17,17) TD(18,18) TD(19,12 TD(20,20) TD(21,21)

2. Tests for Invariance Across Ability

2.1. Testing for Equivalent Item-Pair Measurements

Given Muthén’s comments regarding the omnibus test of invariant vari-
ance-covariance matrices (see Chapter 6), we begin by first testing for an
invariant number of factors across track. As such, the high- and low-track
baseline models were combined into one file and the model specified as
a two-group four-factor model. The fit of this four-factor solution, which
we will call Model 1, yielded a reasonable fit to the data (x5, = 1230.64;
BBI = 0.90).! On the basis of these results, we conclude that for both
tracks the data are adequately described by the four hypothesized factors
of SC. The LISREL input for this simultaneous run (Model 1), is pre-
sented in Table 7.1. The presentation of specification data for Model 1 in
two different formats is intended to assist you in making the correspon-
dence between the model schema as presented in Figure 7.1 and the com-
puter input as presented in Table 7.1.

A couple of points related to the Model 1 input are worthy of note.
First, the theta-delta matrix could also have been specified as TD =DI.
As such, there would be no need to specify all 6, parameters as free;
start values, however, would be specified for each of these parameters.
Second, you will note that, unlike the application presented in Chapter 6,
the start values here remained unchanged from the single-group analyses
based on the correlation matrix (KM) and the multiple-group analyses
based on the covariance matrix (CM). The reason for leaving the start

'Recall that this goodness-of-fit index represents the sum of the x? values for the
separately estimated baseline models.
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values intact here was because a convergent solution was achieved with
the original values.”

As noted in Chapter 6, evidence that the data are well described by
four SC factors for both the low and the high tracks (see Model 1) in no
way implies that the actual factor loadings are the same across track; this
hypothesis must be tested and is done so by placing equality constraints
on all parameters. The LISREL input for this model (Model 2), as speci-
fied for the high track (group 2) only, is illustrated in Table 7.2.* Of partic-
ular importance in the MO statement is the specification that the A matrix
be constained invariant across groups (LX = IN). It is worth noting that
although the specification of A parameters as free or fixed has been de-
leted from the input, as have the start values for these parameters, this
need not have been done. Had these specifications been included, how-
ever, the imposition of a constrained A matrix would have caused LIS-
REL to override these commands.

The hypothesis of an invariant pattern of factor loadings across track
was found to be tenable (Ax> (17) = 23.91); the Ax® representing the dif-
ference in model fit between Model 1 (number of factors constrained
equal) and Model 2 (number of factors and pattern of factor loadings con-
strained equal). From this information we can conclude that all items
comprising the four subscales of the SDQ are measuring the same SC
facet in the same scaling units for both the low and high tracks.

It is important to note that if, on the other hand, the hypothesis of an
equivalent pattern of factor loadings had been rejected, we would want
to investigate further, the source of this noninvariance. Therefore, we
would proceed to test, independently, each item-pair factor-loading pa-
rameter in the matrix. (This technique will be demonstrated in Chapter
8.)

2.2. Testing for Equivalent Factor Covariances

Testing for the invariance of factor covariances bears on the group equiv-
alence of SC relations as measured by the four SDQIII subscales. To test
this hypothesis, equality constraints are imposed, independently, on each

’A nonconvergent solution is evidenced by the error message that LX is written
on————— KSI 2 (or something comparable). Like many other error messages
in LISREL, this one bears no clue to the problem of inappropriate start values.
Should you receive this message, however, the start values should be made larger,
consistent with covariance, rather than correlation values (see Chapter 6).
*Since in testing for invariance using LISREL, the model of interest is specified
such that constraints on the model (i.e., specification of equalities across groups)
are specified on the MO card for the second and subsequent groups only, the
model specification for group 1 therefore remains intact and is never altered.
Thus, the LISREL input related to the MO and subsequent cards for group 2 only
is of interest for all remaining tests for invariance.
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TABLE 7.2. LISREL Specification Input for Model 2 (High Track Only): Testing
for an Invariant Pattern of Factor Loadings

Testing for Invariance of Item Pairs — Grp 2 = Hi Track
DA ND=613
LA
*
*GSC1Y *GESC2* 'GSC3* *G5C4* *GSCS? *GSCE? *ASCL* *ASC2* *ASC3* *ASL4?
:aggg: *ESC1* ESC2*' 'ESC3? *ESC4® *ESCS® *MSC1? *MSC2? *MSC3* MSC4?
KM SY
(21F3.2)
1000
71100
79 62100
&3 57 62100
74 71 77 62100
&2 59 61 68 64100
25 24 19 28 19 24100
21 22 18 30 26 23 70100
23 22 23 31 21 24 55 78100
25 22 24 33 23 24 S50 70 7464100
25 23 21 31 21 29 42 61 72 69100
15 04 14 09 10 08 14 22 24 26 23100
13 11 13 14 14 07 18 29 28 33 23 41100
25 18 31 21 25 22 12 24 30 35 28 42 44100
33 24 32 21 27 23 19 27 30 42 32 45 47 42100
04 01 O3 10 08 05 08 19 19 21 21 19 35 24 24100
14 11 09 17 12 14 34 39 34 36 3I6-06 02-02 08 11100
11 12 12 13 11 14 18 22 25 26 35-15-046—-08 02 02 71100
11 11 11 10 11 15 21 32 35 33 42-10 01-00 06 08 75 81100
12 11 11 15 08 15 25 34 39 40 47-05 05 05 11 0B 4% 78 82100
Mga 07 07 15 09 13 28 33 32 34 41-06 04 02 10 05 67 72 72 74100
*
6£.21 6.40 5.96 6£.47 6.55 6.17 4.66 5.96 5.90 6£.02 6.17 5.52
2681 5.92 5.50 7.10 5.30 4.64 5.29 5.19 4.13
*
1.38 1.30 1.39 1.36 1.48 1.39 1.58 1.33 1.38 1.30 1.40 1.71
1.62 1.31 1.43 1.52 1.88 2.05 1.86 1.78 1.82
MO LX=IN PH=5Y TD=8Y,FI
FR TD(1,1) TD(2:2) TD(3:3) TD(4,4) TD(5.:3) TD(&6,6) TD(7,7) TD(B,8)
FR TD(2.9) TD{(10,10) TD(11,11) TD(12,12) TD(13,13) TD(14,14) TD(15.15)
FR TD(16,16) TD(17,17) TD(18,18) TD(19,19 TD(20,20) TD(21.21)
ST .5 PH(1,1) PH{(2,2) FH(Z,3) FH(4,4)
ST .3 PH(2,1) PH(3,1) FH(3,2) PH(4,1) FH(4,2) FH(4,3)
ST .2 TD(1,1) TD(Z2,2) TD(3,3) TD(4,4) TD(5,5) TD(&,6) TD(7,7) TD(H.8
ST .2 TD(9,9) TD(10,10) TD(11.11) TD(12,12) TD(13,13) TD{14,14) TD(1
85 ﬁ% TD(1b,16) TD{(17,17) TD(18,18) TD(19,19 TD{(20,20) TD(21,21)

of these phi parameters (db,,, &3y, ay, b3, baz, a3). However, recall that
tests for invariance are based on a series of successively specified mod-
els, such that each is more restrictive than the former; such models are
referred to as ‘‘nested models.”” In keeping with this model-nesting mode
then, we now increase the number of restrictions in Model 2 by adding
equality constraints for each of these covariance parameters. This is ac-
complished by placing equality constraints on both the LX matrix and the
particular parameters representing covariances; we’ll call this Model 3.
The LISREL specification input for this model (again for the high track
only) is presented in Table 7.3. Note that since the entire ® matrix was
not constrained equal across groups (which would need to be indicated
on the MO card), a separate equality constraint statement must be speci-
fied for each parameter of interest.

Since the fit differential between Models 2 and 3 is found to be nonsig-
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TABLE 7.3. LISREL Specification Input for Model 3 (High Track Only): Testing
for Invariant Factor Covariances

Testing for Invariance of Item Fairs — Grp 2 = Hi Track
Eﬁ NO=613

*
*GSC1* *GSC2Y *GS5C3I* *GSC4° *GSCS® *GSCe* *ASCL? 'ASC2*' *ASC3* 'ASCAH?
*ASCS® *ESC1® *ESCZ® *ESC3® *ESC4* 'ESCS® *MSCL* *MSC2' *MEC3® *MoC4a?

15 04 14 09 10 08 14 22 24 26 23100

13 11 13 14 07 18 29 28 33 23 41100

25 18 31 25 22 12 24 30 35 28 42 44100

z 24 32 27 23 19 27 30 42 32 45 47 42100

o4 01 O3 08 05 08 19 19 21 21 19 35 24 24100

-
»
=3
=3
Q
0
losid et alad M 1 ¢
UUQWNO ==
-
-

12 14 34 22 34 36 36-06 02-02 08 11100

11 12 12 14 18 22 25 26 35-15-06-08 02 02 71100

11 11 11 11 15 21 32 35 35 42-10 01-00 04 08 75 81100

12 11 11 08 15 25 34 3I9 40 47-05 05 05 11 08 &9 78 82100
"88 07 07 0% 1% 28 23 32 24 41-06 04 02 10 05 67 72 72 74100
*
6.21 £.40 5.96 6£.47 6.55 6.17 4.66 53.96 5.90 6.02 6.17 5.52
gbBI 5.9 .50 7.10 5.30 4.64 5.29 5.19 4.132
*
1.328 1.30 1.39 1.36 1.48 1.37 1.58 1.33 1.38 1.20 1.40 1.71
1.62 1.31 1.43 1.52 1.88 2.05 1.86 1.78 1.82
MO LX=IN PH=5Y TD=8Y,FI
FR TD{1,1} TD(2,2) TD(Z D(4,4) TD{(5,9) TD{&,6) TD(7,7) TD(H,8)
FR TD(9,9) TD(102,10) TD 1) TD(12,12) TD{1Z,13) TD(14,14) TD(15,15)
FR TD(16,16) TD(17,17) +18) TD(19,17 TD(20,20) TD(Z1,21)
ST .5 FH(1,1) PH(2,2) F 3y PH4,4)
ST .32 PH(2.1) FH(Z,1) F 2) PH(4,1) FH(4,2) FH(4,3)
ST .2 TD(1,1) TD{(Z:,2) T Z) TD(454) TD(S5.5) TDi{bs&) TD(7,7) TD(E,8
ST .2 TD(P,92) TD{10,10 1,11} TD(1Z,12) TD(13,13) TD(14,14) TD(1
ST .2 TD(16.16) TD(17.17 (18,18) TD(12,192 TD(20,20) TD{(Z21,21)
EQ PH{1,Z.1) PH(Z,1)
EQ PH(1.3.1) PH(Z.1)
EQ FH(1,4,1) FH(4,1)
EQ PH(1.3,2) PH(Z,2)
EGQ PH{1,4,2) FH{4.2)
EQ FH(1.4,32) FPH(4,2
U NS

nificant (Ax* (6) = 6.42), the hypothesis of invariant factor covariances
is considered tenable. This finding provides evidence that the theoretical
structure of SC, as measured by the SDQIII, is the same for both the low
and high tracks. (Compare these results with those across gender using
multiple measures of SC, as demonstrated in Chapter 6.)

Once again, if the hypothesis of equivalent factor covariances had been
found untenable, we would be well advised to investigate further, the
source of this noninvariance by testing, independently, each factor covar-
jance parameter in the ® matrix; model specification, of course, would
include the invariant or partially invariant N parameters.
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2.3. Testing for Equivalent Item-Pair Reliabilities

Generally speaking, in multiple-indicator CFA models, testing for the in-
variance of reliability is neither necessary (Joreskog, 1971a), nor of par-
ticular interest when the scales are used merely as CFA indicators and
not as measures in their own right, ignoring reliability (Muthén, personal
communication, Oct. 1987). Although Joreskog (1971b) demonstrated the
steps involved in testing for a completely invariant model (i.e., invariant
A, @, and O), this procedure is considered an excessively stringent test
of factorial invariance (Muthén, personal communication, Jan. 1987). In
fact, Joreskog (1971a) has shown that while it is necessary that multiple
measures of a latent construct be congeneric (i.e., believed to measure
the same construct), they need not exhibit invariant variances and error/
uniquenesses.

When the multiple indicators of a CFA model represent items from a
single measuring instrument, however, it may be of interest to test for the
invariance of item reliabilities as a means to detect evidence of item bias
(see e.g., Benson, 1987). In contrast to the conceptual definition of item
bias generally associated with cognitive instruments (i.e., individuals of
equal ability have unequal probability of success), item bias related to
affective instruments reflects on its validity, and hence, on the question
of whether items generate the same meaning across groups; evidence of
such item bias is a clear indication that the scores are differentially valid
(Green, 1975).

From classical test theory, item reliability is defined as the ratio of true
score variance to total score variance (true plus error score variance); in
LISREL lexicon this can be represented as ¢/(¢ + 6,), where ¢ repre-
sents factor true score variance and 6, represents error score variance
associated with measures of the factor. For example, in the present study,
b,,/(db,, + 05,,) represents the ratio of true score to total score variance
for general SC. (Total score variance = true score variance plus error
score variance associated with the six item-pair measurements of general
SC.) It follows from this that the reliability of each measure in a LISREL
model is determined in part by the variance of its corresponding factor;
the reliability ratio thus becomes N>d/(\*d + 0,) (Joreskog, 1971b). Again,
within the framework of the present data, \3,d,,/(A2,d,, + 655;) would
represent the reliability of the third item-pair designed to measure general
SC.

In examining test reliability, it is important to know if the factor vari-
ances are equivalent across groups. If they are, then the invariance of
item reliabilities is tested by constraining related As, 3s, and ¢s across
groups (see e.g., Cole & Maxwell, 1985; Rock et al., 1978). If, on the
other hand, the factor variances are nonequivalent across groups, then
testing for reliability invariance must be based on the ratio of true and
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TABLE 7.4. LISREL Specification Input for Model 4 (High Track Only): Testing

for Invariant Factor Variances

and Covariances

Testing for Invariance of Item FPairs — Grp 2 = Hi Track
DA NO=4613

LA

*

*GSC1* *GBSC2’ *GSCI* *GSC4’ *GSCSY "GSCE® *ASCL® *ASCZ? *ASCIY *ASC4A?

*ASCS? *ESC1’ ’ESC2' *ESC3?
» MSCS®

ESC4* *ESCS' *MSC1? *MSCZ' *MSCI "MSC4®

KM SY

(21F3.2)

1000

71100

79 &9100

&3 57 62100

74 71 77 &9100

62 59 61 68 64100

25 24 19 28 19 24100

21 22 18 30 26 23 70100

2% 22 22 321 21 24 35

25 22 24 33 23 24 S0

25 23 21 31 21 29 42

15 04 14 09 10 08 14 00

12 11 13 14 14 07 18 41100

25 18 31 21 25 22 12 42 44100

33 24 32 21 27 27 19 45 47 42100

04 01 O 10 08 05 08 19 2 4 24100

14 11 09 17 12 14 34 7 I6-06 g O

11 12 12 1Z 11 14 18 3I5-15-06-08 02 02 71100

11 11 11 10 11 15 21 42—-10 01-00 056 0B 75 81100
12 11 11 15 08 15 25 47-05 05 05 11 08 &9 78 BZ2100
PgB 07 07 15 09 132 28 41-06 04 02 10 Q5 &7 72 72 74100
i
*
6.21 L£.40 5.96 6.4 S 6.17 4.466 S5.96 5.90 6.02 6.17 5.5
2.81 5.92 5.50 7.10 5.30 4.64 3.27 5.1% 4.13
SO
*

1.328 1.30 1.3 34

1.62 1.321 1.4 S
MO LA=IN FH=I
FR TD(1.1) TD 2 TDY(
FR TD(9.7) TD 1,110
Fr TD{ib, 167 viB, 1
ST .2 TD(i.1) EREY
=T .2 TD{F.7} D(iia
=T .2 TD{1&,1¢8 iDit
U Mg

error score variances (Cole & Maxwell, 1985; Rock et al., 1978). This
procedure, however, is quite complex and has not been fully demon-
strated in the literature. Although Werts et al. (1976) address the testing
of a ratio of variances, they do not provide an explicit application related
to tests for the invariance of the reliability ratio.

Returning once again to our track data, our first step is to test for the
invariance of factor variances in order to establish the viability of impos-
ing equality constraints on the A and & for each item-pair. The LISREL
input for this model (Model 4), as specified for the high track, is presented
in Table 7.4.*

“Although this model was specified by adding separate equality constraint state-
ments for each of the variance parameters PH(1,1), PH(2,2), PH(3,3), and
PH(4,4), we could just as easily have specified the entire ® matrix invariant
(PH=IN) on the MO card.
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TABLE 7.5. Summary of Invariance Tests for Item-Pair Measurements and
Structure Across Track

Competing models X df Ay’ Adf

1. Four SC factors invariant 1,230.64 366 — —

2. Model 1 with pattern of factor 1,254.55 383 23.91 17
loadings invariant

3. Model 2 with factor covariances 1,260.97 389 6.42 6
invariant

4. Model 3 with factor variances 1,288.58 393 27.61"" 4
and covariances constrained
invariant

5. Model 3 with factor variances
independently invariant

a) General SC 1,265.02 390 4.05 1
b) Academic SC 1,274.10 390 13.13" 1
¢) English SC 1,261.05 390 .08 1
d) Mathematics SC 1,275.76 390 1479 1

'p<0.05 "'p<0.001
SC = self-concept.

The difference in model fit between Models 3 and 4 was found to be
highly significant (Ax* (4) = 27.61, p<0.001); the hypothesis of equivalent
factor variances must therefore be rejected. Given these findings, we now
want to determine which of the four variances are noninvariant in order
that we know how to proceed in testing for the invariance of item-pair
reliabilities. Thus, we proceed to test for the equality of each variance
parameter, independently, using the same procedure as that demon-
strated in Chapter 6. As such, Model 3 (in which all factor loadings and
covariances are constrained equal) is estimated with the additional speci-
fication that the variance of general SC (d,,) be constrained equal across
track; likewise, each of the remaining variances for academic (¢,,), En-
glish (¢;3), and mathematics (¢,,) SCs is specified, respectively, and the
model subsequently estimated. For example, the LISREL input for the
first of these four models tests for the equality of general SC variance;
the specification is as specified in Table 7.3, but with the added statem-
ent—EQ PH(1,1,1) PH(1,1).

Results of these tests were derived from the comparison of each of
these models with Model 3, in which only the factor loadings and covari-
ances were constrained. Findings revealed only one factor variance (¢,
English SC) to be invariant across track (Ax;,, = 0.08). Results for the
three noninvariant variances are as follows: general SC (Ax;,, = 4.05,
p<0.05); academic SC (AX(Z,) = 13.13, p<0.001); and mathematics SC (A
xf,) = 14.79, p<0.001). These results are summarized in Table 7.5.

For purposes of the present study, further tests of invariance are con-
ducted for the English SC factor only. Our first concern, then, is to deter-
mine if all item-pairs comprising this subscale are invariant across track.
We begin by testing a model in which all the factor loadings and covari-
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TABLE 7.6. Summary of Invariance Tests for Item-Pair Reliabilities Across
Track?

Competing models X’ df Ax? Adf
3. All factor loadings and 1,260.97 389 — —_—
covariances invariant
Model 3 with:
a) ESC subscale error variances 1,281.91 394 20.94™ 5
galuz—slme)
nvariant
b) 8,,,, invariant 1,261.44 390 47 1
C) 8,525 85,3 invariant 1,261.45 391 .48 2
d) 812025 Bi3a 1,267.32 392 6.35 3
8,414 Invariant
€) 85125 d13.35 1,270.54 393 9.57 4
814145 85,15 invariant
) 815125 13435 1,278.55 393 12.58™ 4

814145 81616 INVariant

'p<0.05 “p<0.01 "p<0.001
2English self-concept subscale only.
ESC = English self-concept.

ances are constrained equal across groups (Model 3), but with the added
constraint that the error variance for each item-pair measuring English
SC (315.12,913.13:014.14:915.15:016.16) 1S also held invariant; Model 3 serves as
the base model against which all competing models related to the reliabil-
ity of English SC measures are compared. The additional LISREL input
for testing the entire subscale would therefore specify the following:

EQ TD(1,12,12) TD(12,12).
ED TD(1,13,13) TD(13,13).
ED TD(1,14,14) TD(14,14).
ED TD(1,15,15) TD(15,15).
ED TD(1,16,16) TD(16,16).

Results from these tests are summarized in Table 7.6. As shown here,
the test of equal reliability of all English SC measures in combination
demonstrated a significant Ax* (p<<0.001) indicating that the reliability of
at least one item-pair was noninvariant across track. Given these findings,
as illustrated in Chapter 6, each item-pair measurement was subsequently
tested independently in order to detect the noninvariant measures; item-
pairs 15 and 16 were found to be noninvariant across track.

3. Summary

This chapter examined tests for the invariance of a single measuring in-
strument across levels of academic ability. Specifically, hypotheses were
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tested that related to the equivalence of the SDQIII subscale item mea-
surements, theoretical relations among the four facets of SC (general, ac-
ademic, English, and mathematics), and reliabilities of the item-pairs re-
lated to each subscale. Tests for invariance were conducted at both the
matrix and individual parameter levels.
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Testing for Invariant Latent Mean
Structures

The primary purpose of this chapter is to demonstrate procedures for test-
ing the invariance of latent mean structures, or, stated differently, testing
for differences in latent means. The analytic strategy here differs both
conceptually and technically from the two previous applications related
to invariance. A secondary aim of this chapter is to demonstrate the tech-
nique of testing for and with partial measurement invariance; thus far, we
have not had occasion to apply this important procedure. (For details of
the study related to this application, see Byrne, 1988a.)

Let us first review the basic conceptual and technical differences in
tests of invariance related to the current and former applications. In
Chapters 6 and 7 our analyses involved testing for the invariance of factor
measurement and variance-covariance parameters; as such, only the
analysis of covariance structures was of interest. This is because in such
analyses, modeling with the mean-related parameters does not impose
restrictions on the observed variable means. In testing for the invariance
of factor means, on the other hand, the modeling does involve restrictions
on the observed variable means and, therefore, the analysis is based on
both the covariance and mean structures. Thus, in addition to the factor
measurement (A, ©) and factor variance-covariance matrices (®), the re-
gression intercept (nu, v) and mean (gamma, I') vectors are of primary
interest. More specifically, v is a vector of constant intercept terms and
considered to be a component of the LISREL measurement model; I is
a vector of mean estimates and a component of the LISREL structural
model.

Technically, testing for the invariance of mean structures is more com-
plicated and thus more tedious than testing for the invariance of covari-
ance structures. (The paucity of reported research in which the technique
has been applied would seem to attest to this fact; for a review, see Byrne
et al., in press.) For example, in order to test for the invariance of latent
means, the model must be structured as an all-Y specification. This
means that if the researcher has used an all-X model in preceding analyses
(as we have done thus far in this book), a reformulation of model specifi-
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cations is a necessary prerequisite to further analyses involving mean
structures. The primary aim of the present chapter is to outline, in some
detail, the steps involved in transforming an all-X to an all-Y model in
order to test for latent mean differences (i.e., the invariance of latent
mean structures).

1. Tests for Invariance Related to Latent
Self-Concept Means

1.1. The Hypothesized Model

The postulated model in the present application is identical to the one
proposed in Chapter 6 (see Figure 6.1), with one exception—the present
model hypothesizes that SC measurements and structure are factorially
invariant across low- and high-academic tracks (rather than across
gender).

1.2. The Baseline Models

For both the low- and high-track groups, the baseline model was derived
from the process of post hoc model fitting with concomitant sensitivity
analyses. These investigations led to final models that included one sec-
ondary loading (low track = \,;; high track = \,), and four error covari-
ances between subscales of the same measuring instrument, three of
which were common across track. (For a more extensive discussion of
analyses related to the fitting of these models, see Byrne et al., 1989.) A
summary of model specifications related to fitting the baseline models for
low and high track is presented in Table 8.1; the models are illustrated
schematically in Figure 8.1.

2. Testing for the Invariance of Factor Covariance
Structures

As with previous tests for invariance demonstrated in Chapters 6 and 7,
the simultaneous estimation of parameters for both tracks was based on
covariance, rather than on correlation matrices. One marked difference
between this application and those presented earlier is that the baseline
model, for both the low and high-tracks, includes one secondary loading'
that is dissimilar across track. Thus, it is important to note that these

'Secondary loadings are measurement loadings on more than one factor; they are
also referred to as cross-loadings.
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TABLE 8.1. Steps in Fitting the Baseline Model

Competing models X df Ax? df x/df BBI TLI
Low Track
0 Null model 1,429.60 55 — — 25.99 — —
1 Basic four-factor 160.54 38 —_ — 4.22 .89 .87
Model with 6,6, = 0
2 0,9, free 122.24 37 38.30" 1 3.30 91 91
3 0,0, 055 free 97.95 36 24.29™ 1 2.72 .93 .93
4 0,05, 0gs, 0,, 5 free 71.38 35 26.57" 1 2.04 .95 .96
S 0,07, Ogs, 0,5 free 54.80 34 16.58" 1 1.61 .96 .98
A, free
6 0,07, 055, 0,15, 49.10 33 5.70° 1 1.49 .97 .98
0y, free
A, free
High Track
0 Null model 4,784.85 55 87.00 — —
1 Basic four-factor 401.09 38 — — 10.56 .92 .89
Model with 6,6, = 0
2 04 free 277.67 37 123.42"" 1 7.50 94 .92
3 g, 0,,5 free 192.50 36 85.17°" 1 5.35 .96 .95
4 0Bgs, 0,5, 0,0, free 153.91 35 38.59 1 4.40 .97 .96
S Ogs, 0,5, 0,0 free 126.86 34 27.05™ 1 3.73 .97 .97
A\ free
6 Ogs, 0,5, 0,07, 105.60 33 21.26™ 1 3.20 .98 .97
0,, 5 free
A free

p < 0.05 'p < 0.001

From Byrne, Shavelson, and Muthén (1989) “Testing for the Equivalence of Factor Covari-
ance and Mean Structures: The Issue of Partial Measurement Invariance” in Psychological
Bulletin, 105, 456-466. Copyright 1989 by American Psychological Association. Reprinted
with permission.

secondary loading parameters must remain unconstrained throughout the
invariance testing procedures. The LISREL specification input for the
simultaneous estimation of these baseline models is presented in Table
8.2.7

2.1. Testing for the Invariance of Measurement Parameters

Invariant Number of Factors. Consistent with our previous invariance
testing procedures, the hypothesis of an invariant number of factors was
tested first (Model 1). This simultaneous four-factor solution yielded a
substantively reasonable fit to the data (BBI = 0.98; TLI = 0.99)° sug-

“Note the reverse order of the group input data here compared with that in Chap-
ter 6 (i.e., group 1 = high track; group 2 = low track).

3The TLI (Tucker-Lewis index), like the BBI, is indicative of the percentage of
covariance explained by the hypothesized model; a value <0.90 usually means
that the model can be improved substantially.
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TABLE 8.2. LISREL Specification Input for the Simultaneous Estimation of
Low- and High-Track Baseline Models

TESTING INVAR ACROSS TRACK- SIMULTANECOUS RUN-GRP1=HI TRACK=%®AGSIM®™ FILE
E: NG=2 NI=15 NO=582 MA=CM

b4
*SDQRGSC® °SDQASC® °SDQESC® *SDQMSC®* °*APIGSC® °®SESGSC®* °*APIASC® ?SCAASC®
"APIESC® °SCAESC® ®APIMSC® °SCAMSC®' °GPA® 'ENG® °*MATH®

267 3971000
173 427-0111000

658 323 212 2001000

812 325 290 226 6681000

556 624 338 325 618 5671000

250 660 342 500 266 312 5391000

151 412 723-040 1€8 201 408 3411000

100 415 559-007 107 140 329 536 6941000

180 455 041 892 272 275 405 516 066 0411000

133 401 015 843 193 189 351 612-016 086 8241000

016 493 154 6414 007 065 340 658 112 296 358 4891000

-028 423 243 170-07C8 023 273 500 291 51¢€ 145 218 7821000
;315 372 033 612-005 036 273 558 006 134 557 666 811 5721000
=

75792 37+330 57.569 49043 76.768 31.467 73,802 30.301 61.794 28.933
9;.223 26223 70.440 68.787 62.687

5
*

142563 11.722 9,867 16:9351 90394 55063 9556 4.919 11.191 5.727,11.606
25986 10172 11.738 16.208

5E

1 536 28 3 9 10 4 11 12/

MO NX=11 NK=4 LX=FU PH=SY TD=SY,»FI
gg tﬁgg-i; LX(3s1) LX(5s2) LX(753) LX(8,3) LX(10s4) LX(1154)

®

FR TD(1s1) TD(2+s2) TD(3,3) TD{(4s4) TD(5,5) TD(6:6) TD(7-7) TD(8B,8)
FR TDO(9,9) TO(10+10) TD(1l1l,11

FR TO(3,5) TD(11s5) TD(10+7) TD(11,8)

5T 300 LX{1o1l) LX{4s2) LX(653) LX(9»

5T 5.0 LX(6,1)

ST 1530 LX(2s1) LX(3s1) LX(5s2) LX(753) LX(B8»3) LX(10:4) LX(11s4)
ST o1 PH{1»1) PH(2,2) PH(3,3) PH(4,4)

ST 05 PH(2s1) PH(3,1) PH(4s1) PH(3+2) PH(4:2) PH(4s3)

ST 40,0 TO(1s1) TD(2s2) TD(3+s3) TD(4e4) TD(5:5) TD(6:6) TD(7,7) TD(8.8)
5T 400 TO(959) TD(10,10) TD(11,11)

35 320 TD(3+5) TD(11+5) TD(10,+7) TD(11,8)

5

TESTING FOR INVARIANCE = GROUP 2 - LO TRACK

DA NJ=2438
LA

%

*SDAG3C® *SDGCASC® *SDQESCT' *SDQAMSC® YAPIGSC® 9SESGSC® YAPIASC® "SCAASC®
'Gpgésc' "SCAESC® "*APIMSC® *SCAMSC® °GPA® °*ENG® *MATH®

K

(15F4.3)

1000

3201000

307 2981000

244 355-0551000

614 237 214 2671000

755 261 276 255 5881000

456 571 392 345 547 4581000

270 530 265 226 219 270 5231000

143 430 523 030 181 108 476 3731000

231 377 433 004 265 245 424 509 4981000

250 388 063 779 245 234 409 345 232 0271000

234 348-012 719 169 214 362 442 075 077 7421000

033 361 027 125 049 009 342 452 063 256 035 1541000

059 320 073 103 135 038 313 252 144 435-020 010 6971000
009 232 014 344 036-021 199 355 065 086 280 490 647 3421000

ME

;5.936 49415 55,026 41.569 76.758 31.157 70165 24,746 57.794 25.343
41710 22,944 61.149 58,375 59,391
sD
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TABLE 8.2. Continued

%
13.442 12.

391 9.468 13.416 9,028 4.875 8.830 4,480 10,701 4,858 10,566
EEBZQ 92149 11.857 14.85%
1 56 28 3 910 4 11 12/
MO LX=FU PH=SY TD=SY,FI
FR LX(251) LX(3s1) LX{5,2) LX{(7:3) LX{(8s3) LX(10s4) LX{11-4)
FR LX(7,1)
FR TD{1s1) TD(2+s2) TD(3+3) TD(4s4) TO(S:+5) TD(6s6) TO(7-7) TDO(8Bs8)
FR TD(9,9) TD{10,10) TD(11,11)
FR TD(8+5) TD{11+5) TD(10s7) TD(9:6)
5T 300 LX(1el) LX(4s2) LX(66s3) LX(9+4)
ST 15+0 LX(2e1) LX{301) LX(552) LX(7+3) LX(853) LX(10,4) LX(11,4)
ST 5.0 LX{7s1)
ST «1 PH(1,1) PH(2,2) PH(3,3) PH(4s4)
ST 05 PH(2s1) PH(3+1) PH(4s1) PH(3+2) PH(4+2) PH(4s3)
ST 40.0 TD(1ls1) TD(2,2) TD(3+3) TD(4+4) TD(5:,5) TD(6+6) TD(7+7) TD(8:s8)
ST 40,0 TD(9,9) TD(10,10) TO(11,11)
35 ggo TD(8sE) TD(11+5) TD(10,+7) TD(9:6)

gesting that, for both tracks, the data were well described by four SC
factors—general SC, academic SC, English SC, and mathematics SC.

Invariant Pattern of Factors Loadings. The hypothesis of an invariant
pattern of factor loadings was tested next by constraining all lambda pa-
rameters (except A\, and Aq,;) to be equal, and then comparing this model
(Model 2) with Model 1, in which the number of factors and pattern of
loadings were held invariant across track, but not constrained equal.
Given the two different cross-loadings (i.e., secondary loadings) for each
track, the entire A matrix could not be constrained equal on the MO card
using the specification LX =IN. Rather, a separate statement of equality
had to be specified for each N parameter. This LISREL specification in-
put for the low track only (as Group 2) is presented in Table 8.3.

TABLE 8.3. LISREL Specification Input for Model 2 (Low Track Only): Testing
for an Invariant Pattern of Factor Loadings

MO LYX=FU FH=SY TD=8Y,FI
FROLX(Z,1) LX(Z,1) LX (S,

]
-

(7,3 LX(B,3) LX(10.44) LX(11.42
) TD(5,.5) TD(&s&) TD(7,7) TD(E.8)
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The estimation of this model yielded a X differential that was highly
significant (AxZ, = 25.82, p < 0.001), indicating that the hypothesis of an
invariant pattern of factor loadings must be rejected. Confronted with this
finding, it is now of interest to pinpoint differences in the measurement
parameters between low and high tracks. As such, we test for partial mea-
surement invariance by testing, independently, the equivalence of each
congeneric set of lambda parameters specified to measure each SC facet.

2.2. Testing for Partial Measurement Invariance

We begin by examining the measurement of general SC, by holding \,,
and"\;, invariant across track. This hypothesized model is found to be
tenable (Ax* (2) = 0.16). Thus, we next test the equality of measurements
for academic SC by holding \,,, A5;, and A, invariant; this hypothesized
model could also not be rejected (Ax* (3) = 7.41). Continuing in this man-
ner, we test the invariance of factor measurements for both the English
and mathematics SC factors; both hypothesized models were rejected
(English SC, Ax? (5) = 17.01, p<0.01; mathematics SC, Ax* (5) = 16.59,
p<0.01). Before proceeding further with these tests of partial measure-
ment invariance, it seems prudent to stop and allow the reader to review
the LISREL specification input for each of these tests. This information
is presented in Table 8.4. In examining these model specifications, it is
important to note the cumulative pattern of adding invariant parameters
to each successive model to be estimated.

As we noted earlier the combination of instruments measuring English
and mathematics SCs was found to be noninvariant across track. Now
we want to determine if any one of these measures is actually invariant
across track. Thus, we proceed to test for the equality of each of these
lambda parameters, individually, while concomitantly holding \,,, A5,
and \, invariant. You can study these model specifications in Table 8.5.

These results revealed that English SC as measured by the SCA (),
and mathematics SC as measured by the API (\,,,), were inconsistent
across track. In other words, the SCA and API were not measuring En-
glish SC and mathematics SC, respectively, in the same way for students
in both academic tracks. A summary of findings related to tests for the
equality of the SC measuring instruments across track is detailed in Table
8.6.

Admittedly, the sequential testing of models in the exploration of par-
tial measurement invariance is problematic. Given the nonindependence
of the tests, it is possible that an alternative series of tests might lead to
quite different results. While we might believe that our sequential model-
fitting procedures are substantively reasonable, verification must come
from cross-validated studies.
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TABLE 8.4. LISREL Specification Input for Models 3-6 (Low Track Only):
Testing for Invariant Subscales

Model 3
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TABLE 8.5. LISREL Specification Input for Models 7-10 (Low Track Only):
Testing for Partial Measurement Invariance

Model 7
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TABLE 8.5. Continued
Model 10

M0 LX=FU FH=8Y_TD=5Y
FR LX(2,1) LX(3Z,1)
FR LX(751)
FR TD(1,1) T
FR TD(2.9) T

(7,3) LX(B853) LX(10,4) LX(11,4)
s4) TD(5,5) TD(6,6) TD(7,7) TD(8,8)

DI b
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4) TD(5,3) TD(bab) TD(7,7) TD(8,8)
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Pt
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TABLE 8.6. Simultaneous Tests of Invariance for Self-Concept Measurements

Competing models X df AY? Adf xAdf

1 Four SC factors 154.60°" 66 — — 2.34
invariant

2 Model 1 with major 180.42 73 25.827" 7 2.47

loadings on each SC
factor invariant®

3 Model 1 with major 154.76 68 .16 2 2.28
loadings on GSC
invariant

4 Model 1 with major 162.01 69 7.41 3 2.35

loadings on GSC and
ASC invariant

5 Model 1 with major 171.61 71 17.017 5 2.42
loadings on GSC, ASC,
and ESC invariant

6 Model 1 with major 171.19 71 16.59" 5 2.41
loadings on GSC, ASC,
and MSC invariant

7 Model 4 with APIESC 163.30 70 1.29 1 2.33
invariant

8 Model 4 with SCAESC 166.24 70 423" 1 2.37
invariant

9 Model 4 with APIMSC 169.50 70 7.49” 1 2.42
invariant

10 Model 4 with SCAMSC 162.06 70 .05 1 2.36
invariant

p < 0.05 “p < 0.01 “'p < 0.001

*All lambda parameters invariant except \;, and A,

GSC = general SC; ASC = academic SC; ESC = English SC; MSC = mathematics SC;
APIESC = API English Perceptions subscale; SCAESC = SCA form B (SC of English
ability); APIMSC = API Mathematics Perceptions subscale; SCAMSC = form C (SC of
mathematics ability).

From Byrne, Shavelson, and Muthén (1989) “Testing for the Equivalence of Factor Covari-
ance and Mean Structures: The Issue of Partial Measurement Invariance” in Psychological
Bulletin, 105, 456-466. Copyright 1989 by American Psychological Association. Reprinted
with permission.
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TABLE 8.7. LISREL Specification Input for Testing the Invariance of Self-
Construct Structure (Low Track Only)
LX=FU PH=IN_TD=5Y,FI

LX(251) LX(351) LX(5,2) LX(7,3) LX(8B53) LX(10,4) LX(11,4)
LX(751)

TD(1,1) TD(2,2) TD(3,3) TD(4,4) TD(5:5) TD(&s6) TD(757) TD(8,8)
TD(2,9) TD(10,10) TD(11,11)

TD(8,3) TD(11,5) TD(10,7) TD(2,6)

30.0 LX(1451) LX(4,52) LX(6:3) LX(9,4)

15.0 LX(7453) LX(B53) LX(10,4) LX(11,4)

5.0 LX(7,1)

-1 PH(1,1) PH(2,2) PH(3,3) PH(4,4)

.03 FH(251) PH(3,1) PH(45;1) PH(3,2) PH(4,2) PH(4,3)

40.0 TD(151) TD(2,2) TD(3,3) TD(454) TD(5,5) TD(&s6) TD(7,7) TD(8,8)
40.0 TD(9;9) TD(10,10) TD(11,11)

6.0 TD(8,3) TD(11,5) TD(10,7) TD(?,6)

LX(15251) LX(2,1)

LX(15351) LX(351)

LX(155,2) LX(5,2)

LX(143753) LX(7:+3)

hé(111114) LX(11,4)

2.3. Testing for the Invariance of Structural Parameters

Having determined equalities among the measurement parameters, our
interest now focuses on testing for the equality of the structural parame-
ters; we turn, then, to the matrix of factor variances and covariances (®).
Our first step in testing for the equality of SC structure, is to constrain
the entire factor variance-covariance matrix invariant across track. The
LISREL specification input for this model is shown in Table 8.7. Note
that in conducting tests for the invariance of structure it is important to
maintain constraints on the measurement parameters; only those mea-
sures known to be consistent in their measurements across track, how-
ever, are held invariant.

The hypothesis of an invariant factor variance-covariance matrix was
found untenable (Ax;,,, = 47.91, p < 0.001). Thus, we employ the same
strategy as when confronted with a noninvariant A matrix; we proceed to
test, independently, the equivalence of each parameter in the ® matrix;
recall again that, at all times, only those measures known to be consistent
in their measurements across track are held invariant (i.e., A,;, A3, Asp,
N3, Ajp4). As with our tests of measurement parameters, the LISREL
input changes from a specification on the MO card (PH =1IN) to a specifi-
cation of equality constraints for each individual structural parameter;
each one being specified, one at a time. Since this technique was specified
for the individual A parameters, it need not be detailed again here.

The results of these analyses yielded one variance (¢,,) and two covari-
ance (¢, ¢,,) parameters to be noninvariant across track. A summary of
findings from tests for an invariant SC structure (i.e., SC variances and
covariances) is presented in Table 8.8.
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TABLE 8.8. Simultaneous Tests of Invariance for Self-Concept Structure

Competing models X df Ax? Adf  x¥/df
| Invariant measurement model® 163.35 71 — — 2.30
2 Model 1 with all factor variances and 211.26 81 47917 10 2.61

covariances invariant
3 Model | with latent variable parameters
made independently invariant

Variances

a) General SC 165.75 72 2.40 1 2.30
b) Academic SC 164.87 72 1.52 1 2.29
c) English SC 163.52 72 17 1 2.27
d) Mathematics SC 190.60 72 27257 1 2.65
Covariances

a) General/academic SC 164.31 72 .96 1 2.28
b) General/English SC 167.95 72 4.60" 1 2.33
¢) General/mathematics SC 163.70 72 .35 1 2.27
d) Academic/English SC 163.56 72 21 1 2.27
e) Academic/mathematics SC 175.74 72 11.74™ 1 2.44
f) English/mathematics SC 166.09 72 2.74 1 2.31

'p<0.05 ""p<0.001
“Aars A3ps Nsa» Az, App 4 held invariant.

3. Testing for the Invariance of Factor Mean Structures

3.1. LISREL Input

Using LISREL to test for the invariance of mean structures requires that
we make several adjustments to the baseline model specification input as
presented in Table 8.2. To enable you to follow this model transforma-
tion, the specified pattern of parameters, for both the low and high tracks,
is presented in Table 8.9 for the all-X model, and in Table 8.10 for the all-
Y model. Note the addition of a vector of intercepts (vs) and a vector of
latent mean parameters (*ys). Before proceeding further, you are urged to
go back and compare the LISREL input for the two baseline models (see
Table 8.2) and the pattern of parameters for these same models (see Table
8.9).

As noted earlier, our first step in testing for latent mean differences was
to restructure the baseline models into an all-Y specification. As such, the
factor loading (A,), factor variance-covariance (®) and error variance-
covariance (6;) matrices (see Table 8.9) were converted into the Ay, V¥,
and O, matrices, respectively; the &s (the latent factors) were treated as
ms in the LISREL sense (see Table 8.10). Second, the program must be
“tricked” into estimating the latent means. This is done by creating a
dummy variable (i.e., an extra variable, ‘dummy,” was added to the vari-
able list, making a total of 12 input variables, not 11). The dummy variable
was given a fixed-Y specification equal to 1.00 (i.e., its value was con-
strained equal to a value of 1.00). Third, to accommodate the dummy
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TABLE 8.9. Pattern of LISREL Parameters for Testing the Invariance

Low Track
X 3 & & &
SDQGSC| 1 0 0o 07
APIGSC Ay O 0o 0
SESGSC Ay O 0 0
SDQASC 0 1 0 0
SCAASC 0 XA 0 O
SDQESC Ax 0O 0 1 0
APIESC Agy 0 N O
SCAESC 0 0 XNa O
SDQMSC 0 ] 0 1
APIMSC 0 0 0 Nos
SCAMSC 0 0 0 A
GSC by
ASC D by b
ESC by b b
MSC by b b b
SDQGSC 3
APIGSC 0 9.
SESGSC 0 0 3,
SDQASC 0 0 0 3,
SCAASC O, 0 0 0 0 d;
SDQESC 0 0 0 0 0 3,
APIESC 0O 0 0 O o0 0 3,
SCAESC 0 0 0 0 3 O 0 B
SDQMSC 0 0 0 0 0 & 0 0 3y
APIMSC 0 0 0 0 0 0 6|!l.7 0 0 8l().l()
| SCAMSC | 0O 0 0 0 &, O 0O 0 O 0 3,

A\ =factor loading matrix; & = factor variance-covariance matrix; O, = error variance-co-
variance matrix; §=observed self-concept (SC) measure; & — &, = SC factors (£, = general
SC: & =academic SC; & = English SC; & = mathematics SC). GSC = general SC; ASC = aca-
demic SC; ESC = English SC; MSC = mathematics SC; SDQGSC = Self Description Ques-
tionnaire (SDQ) General-Self subscale; APIGSC = Affective Perception Inventory (API)
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of SC Measurements and Structure

High Track
& & & &
1t 0o o 0]
Ny 00 0
Ay 000
0 | 0 0
0 X O 0
Ay 010
0 0 An 0
0 0 ANa 0
0o 0 0 1
0 0 0 N
L 0 0 0 )\ILJJ
d’ll
d"_'l ¢:’3
by b bn
by b by bu
3y
0 3,
0 0 3,
0 0 0 844
0o 0 0 0 B
o 0 0 0 0 B
0o 0 0 0 0o 0 3%,
0o 0 0 0 B 0 0 By
0o 0 0 0 0 0 0 0 Byo
0 0 0 0 0 0 8y, O 0 By
0 0 0 0 9,5 0 0 B, 0 0 LITRT

Self-concept subscale; SESGSC = Self-esteem Scale; SDQASC = SDQ Academic SC sub-
scale; SCAASC = Self-concept of Ability Scale (SCA); SDQESC =SDQ Verbal SC sub-
scale; APIESC = API English Perceptions subscale; SCAESC = SCA form B (SC of English
ability); SDQMSC = SDQ Mathematics SC subscale; APIMSC = API Mathematics Percep-
tions subscale: SCAMSC = SCA form C (SC of mathematics ability).
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TABLE 8.10. Pattern of LISREL Parameters for Testing the Invariance

Low Track

Y M M M My v
SDQGSC] f1 0 0 0 Ns |
APIGSC Ay 0 0 0 sy
SESGSC Ay 0 0 0 Ay
SDQASC 0 1 0 0 M\g
SCAASC 0 A, 0 0 A
SDQESC Al 0 0 1 0 A
APIESC U T VN R
SCAESC 0 0 Ay 0 Igs
SDQMSC 0 0 0 1 g
APIMSC 0 0 0 Aos Mos
| SCAMSC | LO 0 0 XAjs Ais
[ GsC T K
ASC a2
ESC Vil G {5
MSC La Lo Lo La
| DUMMY Lo 0o 0 o0 o0 |
SDQGSC] [e, T
APIGSC 0 e
SESGSC 0 0 ey
SDQASC 0 0 0 ey
SCAASC 0 0 0 0 e
SDQESC o, 0 0 0 0 0 e
APIESC 0 0 0 0 0 0 e
SCAESC 0 0 0 0 e 0 0 e
SDQMSC 0 0 0 0 0 e 0 0 e
APIMSC 0 0 0 0 0 0 €0 0 0 egu0
| SCAMSC| 10 0 0 0 €¢5 0 0 0 0 0 e
[ GSC 7] 0 N
ASC 0
ESC r |o
MSC 0
| DUMMY | 1

Ay = factor loading matrix; ¥ = factor variance-covariance matrix; ©, = error variance-
covariance matrix; I’ = mean estimate vector; Y = observed measures of self-concept
(SC); m-my = SC factors (n, = general SC; m, = academic SC; m; = English SC;
m, = mathematics SC); v = mean intercepts; GSC = general SC; ASC = academic SC;
ESC = English SC; MSC = mathematics SC; SDQGSC = Self Description Questionnaire
(SDQ) General-self subscale; APIGSC = Affective Perception Inventory (API) Self con-
cept subscale; SESGSC = Self-esteem Scale; SDQASC = SDQ Academic SC subscale;
SCAASC = Self-concept of Ability Scale (SCA); SDQESC = SDQ English SC subscale;
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of Mean Structures

High Track
Ui M2 M3 Ma v
1 0 0 0 Ay |
s 0 0 [V O
A3 0 0 0 A
0 1 0 (U
0 A, O 0 s
a1 0 1 (U
0 0 A3 0 Ay
0 0 Nes 0 Ngs
0 0 0 1 Nos
0 0 0 Nos Aos
L 0 0 0 AMia Mo
XS )
L
G G G
Lo Lo Lo la
L 0 0 0 0 0 ]
[ €n 7
0 e,
0 0 ey
0 0 0 ey
0 0 0 0 e
0O 0 o0 0 0 e
0O 0 o 0 0 0 ey
0 0 0 0 € O 0 e
0O 0 O 0 0 0 0 0 ey
0O 0 0 o0 0 0 €7 0 0 €4
0 0 o 0 €5 0 0 €5 O 0 &
B Yu N
Y21
Y3
Ya1

APIESC = API English Perceptions subscale; SCAESC = SCA form B (SC of English
ability); SDQMSC = SDQ Mathematics SC subscale; APIMSC = Mathematics Percep-
tions subscale; SCAMSC = SCA form C (SC of mathematics ability).

From Byrne, Shavelson, and Muthén (1989) “Testing for the Equivalence of Factor Covari-
ance and Mean Structures: The Issue of Partial Measurement Invariance” in Psychological
Bulletin, 105, 456-466. Copyright 1989 by American Psychological Association. Reprinted
with permission.

spssYA)i@yahoo.com
okl Jilal 545523



WWW.SPSS-pasw.ir
172 8. Testing for Invariant Latent Mean Structures

variable, a row of Os (one for each variable was added to the last row of
the input matrix which, in the case of the present data, is a correlation
matrix (see Table 8.1); the value of 1.00 was added to the series of stan-
dard deviations (i.e., the standard deviation value representing the
dummy variable). Fourth, since the analysis of structured means must be
based on the moment, rather than on the covariance matrix, the observed
mean values were added to the data input; a value of 1.00 was added for
the dummy variable since its value was fixed. Fifth, the A and ¥ matrices
must be modified to accommodate the dummy variable; this was accom-
plished as follows: and extra column of free As was added to the matrix;
these represent the measurement intercepts and an extra row of 0s was
added to the ¥ matrix; {s; was fixed to zero.* Sixth, the latent mean val-
ues were estimated in the gamma (I') matrix. The parameters v, to v,,
were fixed to zero for the low track, but allowed to be freely estimated
for the high track; v;, was fixed to 1.0 for both tracks. Finally, since the
analysis of mean structures is based on the moment matrix, the DA card
was modified to read as MA = MM.

The LISREL specification input for both the low and high tracks is
presented in Table 8.11. To get a clear picture of this transformation from
the all-X to the all-Y model, I urge you to study and compare carefully
the pattern of parameters presented in Tables 8.9 (all-X model) and 8.10
(all-Y model), and the LISREL specification input in Tables 8.2 (all-X
model) and 8.11 (all-Y model).

Since the origins of the measurements and the means of the latent vari-
ables carinot be identified simultaneously, absolute mean estimates are
not possible. However, when the parameter specifications as described
earlier are imposed, latent mean differences between groups can be esti-
mated; one group is used as the reference group and as such, its latent
mean parameters are fixed to 0.0. In this case, the low track served as
the reference group; mean parameters for the high track were freely esti-
mated. Comparison of the groups, then, is based on the difference from
zero. Statistical significance is determined from the 7-values (mean esti-
mates divided by their standard error estimates).

Once again, I want to draw your attention to the fact that only the
factor-loading parameters known to be consistent in their SC measure-
ments across track were held invariant. Thus, it is important to note that
since \;, and A; were freely estimated for the low and high track, respec-
tively, the intercept terms for these parameters (\;s, Ass) were also free
to vary for each track.

“The LISREL program will print the message that *‘PSI is not positive definite.”’
This can be ignored since it is a function of {5 being fixed to 0.0.
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TABLE 8.11. LISREL Specification Input for Testing the Invariance of Mean
Structures

TESTING INY OF MEANS ACRJS55 TRACK = GRP1= HI TQACK “AGMEANS™ FILE

DA NG=2 NI=13 NO=582 MA=MM

LA

*SDQGSCY ®*S0CASC® *SDQESC® *SDAMSC® *APIGSC® °®SESGSC® *APIASC® *SCAASCY
PAPIESC? °*5CAESC? "APIMSC?® ?SCAMSC® °DUMMY®

KM SY

(13F4.3)

1000

3301000

267 3971000

173 427-0111000

658 323 212 20010CO

812 325 290 226 6€81000

6556 624 338 325 618 5671000

250 660 342 500 266 312 5391000

151 412 723-040 188 201 408 3411000

100 415 559-007 107 140 329 536 6941000

180 455 041 892 272 275 405 516 066 0411000

133 401 015 843 193 189 351 612-016 086 8241000
MgOO 000 000 000 OCO 000 000 000 000 000 000 0000000
P
75792 572830 S57.569 49,043 76.768 31,467 73.802 30,301 61.794 28.933
47.223 26.223 1.000

SD

B4
14.563 11.723 9,867 16:951 9394 5063 95556 4,919 11.191 5.727 11.606
7.986 1.000

SE
1 56 28 3 9 10 4 11 12 13/
M

0 NY=11 FI NX=1 NE=5 LY=FU GA=FU»F1 PS=S5YsF1 BE=ZE TE=SY,FI
FR LY(2.1) LVY(35s1) LY(S5,2) LY(753) LY(B,3) LY(10,4) LY(11:4)
FR LY{1,5) LY(2s5) LY{(355) LY(455) LY(5:5) LY(6s5) LY{(7:5) LY(8s»5)
FR LY(9,5) LY(10.5) LY(1155)
FR LY(6,1)
FR TE(lsl) TE(2,2) TE{3,3) TE(4+4) TE(S5,5) TE(6:6) TE(7:,7) TE(8:8)
FR TE(9,9) TE(10,10) TE(1l1ls11)
FR TE(8,5) TE(11,5) TE{10,7) TE(11,8)
FR GA{1l,1) GA(2s1) GA(3s1) GA(4,1)
FR PS(1l,1) PS(2:2) PS(3,3) PS(4+4)
FR PS(251) PS(3:1) PS(4.1) PS(3:2) PS(4,2) PS(4:3)
ST 30,0 LY{1s1) LY(452) LY(6:3) LY(9+4)
ST 5,0 LY{(6,1)
ST 15.0 LY(261) LY(3s1) LY(5+2) LY(753) LY(B8s3) LY(10s4) LY(11,4)
ST S50 LY{1:55) LY(2:5) LY(3,5) LY(4:5) LY{5:5) LY{(655) LY(755) LY(8:5}
ST 5,0 LY(9,5) LY(10,5) LY(11,5)
ST. »1 PS(1s1) PS(2s2) PS(3s3) PS(4s4)
ST .02 PS(2s1) PS(3el) PS(4s1) PS(3+2) PS(4.2) PS{4s3)
ST 5.0 GA{1,1) GA(2s1) GA(3,1) GA(451)
ST 1.0 GA(5,s1)
ST 0.0 TE(1,1) TE(2,2) TE(3,3) TE(4,4) TE(5:5) TE(6:,6) TE(7:,7) TE(8:8)
ST 40.0 TE(9,9) TE(10,10) TE(11,11)
ST 6.0 TE(8,5) TE(11+,5) TE(10,7) TE(11,8)
OU NS SE TV MI

TESTING FOR MEANS - GROUP 2 - GLEVEL
D: NO=248
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TABLE 8.11. Continued
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3.2. LISREL Output

The parameter estimates and standard errors are shown in Table 8.12. At
first glance, the format used in presenting the results may seem somewhat
confusing to you; your reaction is not unexpected. Admittedly, the pre-
sentation of these data, although conventional, certainly bears further ex-
planation. Let’s now examine important elements in the table.

1. All values in parentheses, as footnoted in Table 8.12, represent the
standard errors of the estimates.

2. All estimates appearing in the center column represent parameters
that were held invariant across track; the values presented are therefore
common to both tracks. All other values relate to parameters that were
freely estimated for each group.’ In this regard, let us now look more
closely at particular measurement parameters that were specified as non-
invariant across track. These include:

*Except for parameters vy,,—y,; for the low track; these values were fixed to 0.0.
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3. Testing for the Invariance of Factor Mean Structures

TABLE 8.12. Maximum Likelihood Estimates for Self-
Concept, Facets®

Parameter Low track High track
vi(As) 75.71 (0.81)

Va(Aas) 76.69 (0.47)

v3(A35) 31.34 (0.29)

vi(Nss) 47.55 (0.67)

vs(Ass) 25.20 (0.28)

Ve(Nes) 55.07 (0.61) 52.35 (0.69)
V1(\3s) 58.03 (0.65) 54.36 (0.88)
Vg(Ags) 25.61 (0.31)

Vo(Ags) 41.72 (0.81)

vm()\m_s) 42.17 (058)

vi(As) 23.05 (0.35)

sy 16.00 (0.66)

p o 10.69 (0.35)

s> 13.72 (0.56)

) . 42.71 (0.94)

Ag3 13.71 (1.31) 18.53 (0.94)
Nioa 23.98 (1.21) 20.26 (0.43)
Nira 12.83 (0.31)

et 3.56 (0.69)
Ay —6.98 (1.66)

Be,, 40.03 (6.81) 44.72 (4.86)
9€., 42.06 (4.29) 40.33 (2.69)
O€,; 6.38 (0.94) 4.25 (0.57)
Be,4, 77.80 (8.72) 52.95 (4.16)
0€ss 8.88 (1.34) 8.05 (0.78)
B€ 42.53 (4.76) 37.12 (2.73)
Oe; 28.16 (6.30) 17.67 (3.38)
Begg 14.43 (1.48) 14.34 (1.05)
Beyy 41.86 (5.72) 25.91 (3.22)
0€19.10 22.79 (3.65) 16.56 (1.65)
Oei 10.92 (1.25) 14.30 (1.00)
Begs 4.67 (0.96) 6.12 (0.66)
0€q5 17.60 (3.17) 7.65 (1.41)
B€,, s 3.70 (0.85) 5.69 (0.65)
Beyg —-8.37 (3.63)

Oei 5 3.20 (0.72)
¥1(GSC) 0.0 0.01 (0.03)
v.,(ASC) 0.0 0.36 (0.03)
v3(ESC) 0.0 0.17 (0.02)
Y4 (MSC) 0.9 0.25 (0.03)
G 0.15 (0.12) 0.19 (0.01)
(o 0.07 (0.01) 0.09 (0.01)
5 0.05 (0.01) 0.06 (0.01)
Cas 0.15 (0.02) 0.29 (0.02)

2Standard errors are in parentheses. x%;;6 = 201.82 GSC =
general self-concept (SC); ASC = academic SC; ESC =
English SC; MSC = mathematics SC.

From Byrne, Shavelson, and Muthén (1989) “Testing for the Equiv-
alence of Factor Covariance and Mean Structures: The Issue of
Partial Measurement Invariance” in Psychological Bulletin, 105,
456-466. Copyright 1989 by American Psychological Association.
Reprinted with permission.
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(a)vg(\gs) and v,(\,s)—the intercept terms for the two cross-loadings (Ag;;
A7)

(b)Ag; and A 4,,—the measures of English SC (SCAESC) and mathematics
SC (APIMSCQ).

(c)Aq, and A\, —the cross-loading of two English SC subscales onto the
general SC factor for the high track (As;; SDQESC) and for the low
track (A,,;; APIESC), respectively. Thus, only one parameter for each
group is estimated.

(d)6 and 6,,, s—error covariances specific to the high track (SDQMSC/
SDQESC) and low track (SCAMSC/SCAESC), respectively.®

(e)6,,,~9.,, ,,—error variances specific to each track.

3. In examining the latent mean parameters (y,, to vy,;), we see that
estimates are presented only for the high track; recall that these parame-
ters were specified as fixed to 0.0 for the low track. For interpretative
purposes, the following points are worthy of note:

(a) The fact that the vy estimates for the high track are positive values
indicates that scores for all SC factors were higher for the high track
than for the low track.

(b) The largest differences between tracks are shown to be in academic
SC (v,,), followed by mathematics SC (vy,,) and English SC (y,,), re-
spectively; mean track differences in general SC (vy,,) were negligible.

(c) To determine if the differences in latent SC means are statistically
significant, we examine the T-values presented in the output. Since
the parameters for the low track are fixed to 0.0, the T-values for the
high track indicate whether the estimates are significantly different
from zero; values >2.00 are considered statistically significant. As
such, significant mean track differences were found with respect to
academic SC (T = 13.99), English SC (T = 7.58), and mathematics
SC (T = 6.93); differences in general SC were not significant (T =
0.23).

Overall, the results demonstrate that the test for invariant SCs across
track based on mean and covariance structures was statistically more
powerful than tests based on covariance structures alone. Whereas tests
of invariance based on the latter found academic track differences in
mathematics SC (¢,,) only, this was not so in the analysis that also in-
cluded mean structures; significant differences were also found in aca-
demic and English SCs.

®Note that while the error covariances 8.4, 0,0, and 8,,, s were common to each
track, they were not constrained equal across groups.
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4. Summary

This chapter demonstrated applications of two unique concepts associ-
ated with tests for invariance: testing for and with partial measurement
invariance and testing for differences in latent mean structures. Since the
LISREL approach to testing for mean structures requires total reparame-
terization if the analysis of covariance structures was based on an all-X
model, the transposition of parameters from an all-X to an all-Y specifica-
tion was detailed. Relatedly, the creation and specification of the dummy
variable in LISREL analyses of mean structures was explained and dem-
onstrated. Finally, results were interpreted within the tabular framework
typically used in reporting findings from the analysis of mean structures.
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Appendix: Description of Data and
Measuring Instruments

Sample and Procedure

The original sample comprised 996 grade 11 and 12 students from two
suburban high schools in Ottawa, Canada. The data approximated a nor-
mal distribution with skewness ranging from -1.27 to 0.06 (X = -0.32);
kurtosis ranged from -0.86 to 2.30 (X = 0.12).

A battery of SC instruments (described later) was administered to in-
tact classroom groups during one 50- minute period. To ensure the rele-
vancy of self-concept (SC) responses related to English and mathematics,
it was important that all students in the sample be enrolled in both of
these subject areas. Since English is part of the core curriculum for high
schools in Ontario (i.e., compulsory), it was known that all students were
enrolled in at least one English course; therefore, only mathematics
classes were tested for the study. The testing was completed approxi-
mately two weeks following the April report cards. The students there-
fore had the opportunity of being fully cognizant of their academic perfor-
mance prior to completing the tests for the study. This factor was
considered important in the measurement of academic and subject-spe-
cific SCs.

Instrumentation

The SC test battery consisted of 12 measures—3 each for general SC,
academic SC, English SC, and mathematics SC. All were self-report rat-
ing scales designed for use with a high school population. General SC was
measured using the General-self Subscale of the Self Description Ques-
tionnaire (SDQIII) (Marsh & O’Neill, 1984), the Self-concept subscale of
the Affective Perception Inventory (API) (Soares & Soares, 1979), and
the Self-esteem Scale (SES) (Rosenberg, 1965). Measures of academic
SC were the SDQIII Academic Self-concept scale, the API Student Self
subscale, and the Self-concept of Ability Scale form A (SCA) (Brookover,
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1962). English SC was measured with the SDQIII Verbal Self-concept
subscale, the API English Perceptions subscale, and the SCA form B.
Items on form B are identical to those on form A, except that they elicit
responses relative to specific academic content (e.g., ‘‘How do you rate
you ability in English compared to your close friends’?’’). Finally, mea-
sures of mathematics SC included the SDQIII Mathematics SC subscale,
the API Mathematics Perceptions subscale, and the SCA form C (items
specific to mathematics ability). The instruments were selected because
they purported to measure (with some empirical justification) the SC fac-
ets in the theory to be tested.

The SDQIII is structured on an eight-point Likert-type scale with re-
sponses ranging form ‘‘1—Definitely False’’ to ‘‘8—Definitely True.”
The general-self subscale contains 12 items and the other three subscales,
10 items each. Internal consistency reliability coefficients ranging from
0.86 t0 0.93 Md o = 0.90) for the SDQIII general SC and each of the
academic SC subscales, and strong support for their construct validity
based on interpretations consistent with the Shavelson et al. (1976) model
of SC have been reported (Byrne & Shavelson, 1986; Marsh & O’Neill,
1984). These four subscales have also been shown to be invariant across
sex and ability (Byrne, 1988b, 1988c).

The API was developed as a semantic differential with a forced-choice
format containing four categories spread along a continuum between two
dichotomous terms (e.g., ‘“happy,”” ‘‘unhappy’’). Internal consistency
coefficients ranging from 0.79 to 0.95 (Md a = 0.85) have been reported
for the subscale measures of general SC, academic SC, and the subject-
specific SCs (Byrne & Shavelson, 1986; Soares & Soares, 1980). Conver-
gent validity coefficients ranged from 0.49 to 0.55 (Md r = 0.50) with peer
ratings, and from 0.37 to 0.74 (Md r = 48.5) with teacher ratings for the
same subscales. Soares and Soares (1980) also presented evidence of dis-
criminant validity. The number of items comprising each of the API sub-
scales is as follows: Self-concept—25; Student Self—25; English Percep-
tions—22; Mathematics Perceptions—17.

The SES is a 10-item Guttman scale based on a format ranging from
“‘strongly agree’’ to ‘‘strongly disagree.”’ A test-retest reliability of 0.62
(Byrne, 1983), and an internal consistency reliability coefficient of 0.87
(Byrne & Shavelson, 1986) have been reported, as well as convergent
validities ranging from 0.56 to 0.67 (see Byrne, 1983). The eight-item
SCA, also a Guttman scale, is based on a five-point format. Respondents
are asked to rank their ability in comparison with others on a scale from
1 (“‘I am the poorest’) to 5 (“‘I am the best’’). Test-retest and internal
consistency reliability coefficients ranging from 0.69 to 0.72, and from
0.77 to 0.94, respectively, have been reported (see Byrne, 1983; Byrne &
Shavelson, 1986).
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Index

A

Assessment of fit

B

adjusted goodness-of-fit index, 54—
55, 61, 71, 78, 91, 98, 106

Bentler & Bonett normed index, 55—
56, 60, 92, 96, 97, 119-120, 129,
135, 143, 147, 158, 165

chi square, 60, 61, 71, 96, 105, 134-
138, 143, 147, 158, 165, 167

chi square/degrees of freedom ratio,
55, 60, 92, 105, 106, 119-120, 129,
135, 143, 158, 165, 167

coefficient of determination, 54, 77,
91

goodness-of-fit index, 54-55, 61, 71,
78, 91, 92, 106

modification index, 57-58, 63—-64,
72-73, 79-80, 92, 93-94

multiple R?, 54, 77, 91

normalized residuals, 57

parameter estimates, 54, 87, 92

Q-plot, 57, 63,72, 79

root mean square residual, 55, 61, 71,
78, 91, 92, 106

Tucker-Lewis index, 135, 158

T-values, 56, 71, 94-95

Baseline model, 125, 129, 143, 157, 167

C

Comparison of latent means, 172, 176
Cross-validation, 66

D
Dummy variable, 167

F
Factor analysis
factor loadings, 4
role of, 3—4
types, 4
Factorial invariance
equality of variance/covariance ma-
trix, 126, 127, 134
hypotheses, 127, 134-140
procedures for testing, 127,
134-140

I
Item reliability, 151

L

Latent variables
endogenous, 6
examples of, 3
exogenous, 6
role of, 3

LISREL
AGFI, 54-55
CFA model, 8-15
coefficient of determination, 54
default values, 24
degrees of freedom, 53
error messages, 34
format, 19

spssYA)i@yahoo.com
Gkl Jilal 545523



WWW.SPSS-pasw.ir

184 Index

LISREL (cont.) Models
general model, 5-8 LISREL CFA, 8-15
GFI, 54-55 LISREL general, 5-8
matrix form, 18, 21-22 LISREL measurement, 5-6
matrix type, 19 LISREL structural, 6
measurement model, 5-6 statistical, 4-5

modification indices, 57
multiple R?, 54

normalized residuals, 57 o
Q-plot, 57 Observed variables, role of, 3
RMR, 55
selection of variables, 20
standard output, 29-33 P
start values, 27 Post hoc model fitting, analyses, 58-60,
structural model, 6 96-97, 162
T-values, 56
S
M Secondary loadings, 157
Matrices Sensitivity analyses, 96-97, 129, 143
basic forms, 21-22 Symbols
elements, estimation status, 24 geometric, 9
estimation status, 22-23 Greek, 7
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